分析 (1)利用椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.求出a,b,然后求解椭圆方程.
(2)设直线l的方程为:y=kx+m,利用直线l与圆:x2+y2=1相切,推出m2=r2(k2+1),由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$
通过判别式△>0,得r2<4,令P(x1,y1),Q(x2,y2),利用韦达定理通过$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=0,求出r=$\frac{2\sqrt{5}}{5}$,满足r2<4,说明OP与OQ能垂直.
解答 解:(1)依题意椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
得c=$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,可得a=2,则b=1,
∴椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$…(4分)
(2)设直线l的方程为:y=kx+m,
∵直线l与圆:x2+y2=1相切,
∴$\frac{|m|}{\sqrt{{k}^{2}+1}}$=r,即m2=r2(k2+1)…①…(6分)
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$
可得(1+4k2)x2+8kmx+4m2-4=0,
△=64k2m2-4(1+4k2)(4m2-4)=64k2-16m2+16>0
所以m2<4k2+1可得r2<4
令P(x1,y1),Q(x2,y2),则x1+x2=$\frac{-8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,…(8分)${y_1}{y_2}=({k{x_1}+m})({k{x_2}+m})={k^2}{x_1}{x_2}+km({{x_1}+{x_2}})+{m^2}$
若OP与OQ能垂直,则$\overrightarrow{OP}•\overrightarrow{OQ}$=x1x2+y1y2=0,…(9分)
∴$({1+{k^2}}){x_1}{x_2}+km({{x_1}+{x_2}})+{m^2}=0$,
(1+k2)$\frac{4{m}^{2}-4}{1+4{k}^{2}}$+$\frac{-8km}{1+4{k}^{2}}$+m2=0,…(
整理得5m2-4(k2+1)=0,…(11分)
把①代入得(k2+1)(5r2-4)=0,
∴r=$\frac{2\sqrt{5}}{5}$,满足r2<4
OP与OQ能垂直.…(12分)
点评 本小题主要考查直线与圆锥曲线、直线与圆位置关系等基础知识,考查运算求解能力,考查数形结合思想、分类与整合思想、函数与方程思想等.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5\sqrt{2}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{7}{2}$$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{1}{2}$个周期 | B. | 向右平移$\frac{1}{2}$个周期 | ||
| C. | 向左平移$\frac{1}{4}$个周期 | D. | 向右平移$\frac{1}{4}$个周期 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$-$\frac{4}{5}$i | B. | -$\frac{3}{5}$+$\frac{4}{5}$i | C. | $\frac{5}{3}$-$\frac{4}{3}$i | D. | -$\frac{5}{3}$+$\frac{4}{3}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com