精英家教网 > 高中数学 > 题目详情
12.已知球O的半径为2,四点S、A、B、C均在球O的表面上,且SC=4,AB=$\sqrt{3}$,∠SCA=∠SCB=$\frac{π}{6}$,则点B到平面SAC的距离为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{3}$D.1

分析 过AB的小圆的圆心为D.可得AC=BC=2$\sqrt{3}$,AD=BD=$\sqrt{3}$,即可求解B到平面SAC的距离.

解答 解:球的直径SC=4,A,B是该球球面上的两点,AB=$\sqrt{3}$,∠SCA=∠SCB=$\frac{π}{6}$,半径为2,
过AB的小圆的圆心为D.可得AC=BC=2$\sqrt{3}$,AD=BD=$\sqrt{3}$,
∴△ABD是等边三角形,AD边上的高为B到平面SAC的距离,即$\frac{3}{2}$.
故选:B.

点评 本题考查了学生的空间想象力,考查转化思想以及计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=ln(1-5x)的定义域是(  )
A.(-∞,0)B.(0,1)C.(-∞,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知Sn是数列{an}的前n项和,且满足Sn-2an=n-4.
(1)证明{Sn-n+2}为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=-ax5-x3+bx-7,若f(2)=-9,则f(-2)=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在多面体ABCDE中,平面ABE⊥平面ABCD,△ABE是等边三角形,四边形ABCD是直角梯形,AB⊥AD,AB⊥BC,AB=AD=$\frac{1}{2}$BC=2,M是EC的中点.
(1)求证:DM∥平面ABE;
(2)求三棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i为虚数单位,则z=i+i2+i3+…+i2017=(  )
A.0B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆M的方程;
(2)若圆N:x2+y2=r2的斜率为k的切线l与椭圆M相交于P、Q两点,OP与OQ能否垂直?若能垂直,请求出相应的r的值,若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,小明同学在山顶A处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A处测得公路上B,C两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD=100m,汽车从B点到C点历时14s,则这辆汽车的速度为22.6m/s(精确到0.1)参考数据:$\sqrt{2}$≈1.414,$\sqrt{5}$≈2.236.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知O为坐标原点,F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,双曲线C上一点P满足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,且|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2a2,则双曲线C的渐近线方程为(  )
A.y=±xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

同步练习册答案