| A. | y=±x | B. | y=±$\sqrt{2}$x | C. | y=±$\sqrt{3}$x | D. | y=±2x |
分析 设P为双曲线右支上一点,|PF1|=m,|PF2|=n,|F1F2|=2c,运用向量的运算和数量积的性质可得直角三角形,再由勾股定理和双曲线的定义,结合已知条件,由双曲线的渐近线方程即可得到所求.
解答 解:设P为双曲线右支上一点,|PF1|=m,|PF2|=n,|F1F2|=2c,
由双曲线的定义可得m-n=2a,
双曲线C上一点P满足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,
即有($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0,
可得$\overrightarrow{OP}$2=$\overrightarrow{O{F}_{2}}$2,即|$\overrightarrow{OP}$|=|$\overrightarrow{O{F}_{2}}$|,
点P满足PF1⊥PF2,可得m2+n2=4c2,
即有(m-n)2+2mn=4c2,
又mn=2a2,
可得4a2+4a2=4c2,
即有c=$\sqrt{2}$a,
b=$\sqrt{{c}^{2}-{a}^{2}}$=a,
则双曲线的渐近线方程为y=±$\frac{b}{a}$x,即为y=±x.
故选:A.
点评 本题考查双曲线的定义,以及直角三角形的勾股定理,考查渐近线方程的求法,以及运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,1) | B. | [1,2] | C. | (2,4] | D. | [2.4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q | B. | p∧(¬q) | C. | (¬p)∧q | D. | (¬p)∨(¬q) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com