精英家教网 > 高中数学 > 题目详情
2.函数f(x)=ln(1-5x)的定义域是(  )
A.(-∞,0)B.(0,1)C.(-∞,1)D.(0,+∞)

分析 根据对数函数的性质得到关于x的不等式,解出即可.

解答 解:由题意得:1-5x>0,
解得:x<0,
故函数的定义域是(-∞,0),
故选:A.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于P、Q两点,F2为右焦点,若△PQF2为等边三角形,则椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数2-3i的虚部为(  )
A.3B.3iC.-3D.-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中点.
(1)求证:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1,求二面角A-BA1-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在$[{\frac{1}{π},π}]$上的函数f(x),满足$f(x)=f(\frac{1}{x})$,且当$x∈[{\frac{1}{π},1}]$时,f(x)=lnx,若函数g(x)=f(x)-ax在$[{\frac{1}{π},π}]$上有零点,则实数a的取值范围是(  )
A.$[{-\frac{lnπ}{π},0}]$B.[-πlnπ,0]C.$[{-\frac{1}{e},\frac{lnπ}{π}}]$D.$[{-\frac{e}{2},-\frac{1}{π}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若复数z=(x2-2x-3)+(x+1)i为纯虚数,则实数x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$\frac{2i}{1-i}+2$的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中为真命题的是(  )
A.若x≠0,则x+$\frac{1}{x}$≥2
B.若直线x-ay=0与直线x-ay=0互相垂直,则a=1
C.命题:“若x2=1,则x=1或x=-1”的逆否命题为:“若x≠1,且x≠-1,则x2≠1”
D.一个命题的否命题为真,则它的逆否命题一定为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知球O的半径为2,四点S、A、B、C均在球O的表面上,且SC=4,AB=$\sqrt{3}$,∠SCA=∠SCB=$\frac{π}{6}$,则点B到平面SAC的距离为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{3}$D.1

查看答案和解析>>

同步练习册答案