精英家教网 > 高中数学 > 题目详情
8.已知某次数学考试的成绩服从正态分布N(116,82),则成绩在140分以上的考生所占的百分比为(  )
(附:正态总体在三个特殊区间内取值的概率值①P(μ-σ<X≤μ+σ)=0.6826;②P(μ-2σ<X≤μ+2σ)=0.9544;③P(μ-3σ<X≤μ+3σ)=0.9974)
A.0.3%B.0.23%C.1.3%D.0.13%

分析 利用变量在(μ-3σ,μ+3σ)内取值的概率约为0.9974,可得成绩在(92,140)内的考生所占百分比约为99.74%,从而可求成绩在140分以上的考生所占的百分比.

解答 解:∵数学考试的成绩服从正态分布N(116,82),
∴μ=116,σ=8
∴μ-3σ=92,μ+3σ=140
∵变量在(μ-3σ,μ+3σ)内取值的概率约为0.9974,
∴成绩在(92,140)内的考生所占百分比约为99.74%,
∴成绩在140分以上的考生所占的百分比为$\frac{1}{2}(1-99.74%)$=0.13%
故选:D.

点评 本题考查正态分布的性质,考查学生分析解决问题的能力,确定成绩在(92,140)内的考生所占百分比约为99.7%是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为(  )
A.$\frac{2}{3}$钱B.$\frac{4}{3}$钱C.$\frac{5}{6}$钱D.$\frac{3}{2}$钱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)作圆x2+y2=1的切线l,l与x轴的交点为抛物线E:y2=2px(p>0)的焦点,l与抛物线E交于A、B两点,则AB中点到抛物线E的准线的距离为(  )
A.$\frac{5\sqrt{2}}{2}$B.3$\sqrt{2}$C.$\frac{7}{2}$$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=2+i,则$\frac{\overline{z}}{z}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.-$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{5}{3}$-$\frac{4}{3}$iD.-$\frac{5}{3}$+$\frac{4}{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|x2-x-6≤0},B={x|x<-1},则A∩(∁RB)等于(  )
A.{x|x>-1}B.{x|x≥-1}C.{x|-1≤x≤3}D.{x|-2≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“方程f′(x)=0有解”是“函数y=f(x)有极值”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在某次摸底考试中,随机抽取100个人的成绩频率分布直方图如图,若参加考试的共有4000人,那么分数在90分以上的人数约为2600人,根据频率分布直方图估计此次考试成绩的中位数为97.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=$\sqrt{2x-{x}^{2}}$},B={y|y=2x,x∈A},则A∩B=(  )
A.[0,1)B.[1,2]C.(2,4]D.[2.4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在边长为2的正方体ABCD-A1B1C1D1中,E为DD1中点,
(1)证明:BD1∥平面AEC;
(2)求三棱锥E-ADC的体积.

查看答案和解析>>

同步练习册答案