| A. | 向左平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
| C. | 向左平移$\frac{π}{3}$个单位 | D. | 向右平移$\frac{π}{3}$个单位 |
分析 根据函数的对称性先求出函数g(x)的表达式,利用函数g(x)是奇函数,求出φ的值,结合三角函数的图象变换关系进行求解即可.
解答 解:设(x,y)是g(x)上的任意一点,则关于直线x=$\frac{π}{6}$对称的坐标为($\frac{π}{3}$-x,y)
则($\frac{π}{3}$-x,y)在与f(x)=2sin(2x+φ)上,
即y=2sin[2($\frac{π}{3}$-x)+φ]=2sin($\frac{2π}{3}$-2x+φ),
即g(x)=2sin($\frac{2π}{3}$-2x+φ)=-2sin(2x-$\frac{2π}{3}$-φ)
∵g(x)是奇函数,
∴-$\frac{2π}{3}$-φ=kπ,即φ=-$\frac{2π}{3}$-kπ,k∈Z
∵|φ|<$\frac{π}{2}$,∴当k=-1时,φ=-$\frac{2π}{3}$+π=$\frac{π}{3}$,
则g(x)=2sin($\frac{2π}{3}$-2x+$\frac{π}{3}$)=2sin(π-2x)=2sin2x,
∵f(x)=2sin(2x+$\frac{π}{3}$)=2sin2(x+$\frac{π}{6}$),
∴y=f(x)的图象向右平移$\frac{π}{6}$个单位后得到y=2sin2(x-$\frac{π}{6}$+$\frac{π}{6}$)=2sin2x,
故选:B
点评 本题主要考查函数的图象和性质,根据函数对称性以及函数奇偶性的性质求出函数的解析式是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{\sqrt{2}}{2}$x | B. | y=±$\frac{\sqrt{3}}{2}$x | C. | y=$±\sqrt{3}$x | D. | y=±2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-$\frac{1}{2}$,1] | C. | [$\frac{1}{2}$,1] | D. | [-$\frac{1}{2}$,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com