精英家教网 > 高中数学 > 题目详情
6.若奇函数y=g(x)与f(x)=2sin(2x+φ)图象关于直线x=$\frac{π}{6}$对称,要得到y=g(x),则可用y=f(x)的图象变换得到(|φ|<$\frac{π}{2}$),需经过的变换是(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

分析 根据函数的对称性先求出函数g(x)的表达式,利用函数g(x)是奇函数,求出φ的值,结合三角函数的图象变换关系进行求解即可.

解答 解:设(x,y)是g(x)上的任意一点,则关于直线x=$\frac{π}{6}$对称的坐标为($\frac{π}{3}$-x,y)
则($\frac{π}{3}$-x,y)在与f(x)=2sin(2x+φ)上,
即y=2sin[2($\frac{π}{3}$-x)+φ]=2sin($\frac{2π}{3}$-2x+φ),
即g(x)=2sin($\frac{2π}{3}$-2x+φ)=-2sin(2x-$\frac{2π}{3}$-φ)
∵g(x)是奇函数,
∴-$\frac{2π}{3}$-φ=kπ,即φ=-$\frac{2π}{3}$-kπ,k∈Z
∵|φ|<$\frac{π}{2}$,∴当k=-1时,φ=-$\frac{2π}{3}$+π=$\frac{π}{3}$,
则g(x)=2sin($\frac{2π}{3}$-2x+$\frac{π}{3}$)=2sin(π-2x)=2sin2x,
∵f(x)=2sin(2x+$\frac{π}{3}$)=2sin2(x+$\frac{π}{6}$),
∴y=f(x)的图象向右平移$\frac{π}{6}$个单位后得到y=2sin2(x-$\frac{π}{6}$+$\frac{π}{6}$)=2sin2x,
故选:B

点评 本题主要考查函数的图象和性质,根据函数对称性以及函数奇偶性的性质求出函数的解析式是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为M,第二象限的点P,Q在双曲线的某条渐近线上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ为等边三角形,则双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=$±\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知a=1,b=2,C=60°,求c,B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点M(a,b).若∠MF1F2=30°,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中.A,B,C所对的边分别为a,b,c,已知cos2C=-$\frac{1}{4}$.
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(2)($\sqrt{a}$+$\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}$)÷($\frac{a}{\sqrt{ab}+b}$+$\frac{b}{\sqrt{ab}-a}$-$\frac{a+b}{\sqrt{ab}}$)-$\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式log4(x2-4)>1+log4(x+2)的解是(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数y=cosx在[-$\frac{π}{3}$,$\frac{π}{3}$]的值域是(  )
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,1]C.[$\frac{1}{2}$,1]D.[-$\frac{1}{2}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F2作双曲线一条渐近线的垂线,垂足为M,且|MF1|=3|MF2|,则此双曲线的离心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案