精英家教网 > 高中数学 > 题目详情
13.已知F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,过F2作双曲线一条渐近线的垂线,垂足为M,且|MF1|=3|MF2|,则此双曲线的离心率是$\frac{\sqrt{6}}{2}$.

分析 求出双曲线的一条渐近线方程,运用点到直线的距离公式,求得|MF2|=b,运用余弦函数的定义和余弦定理,结合离心率公式,计算即可得到所求值.

解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线方程为y=$\frac{b}{a}$x,
F2(c,0)到渐近线的距离为d=|MF2|=$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=b,
cos∠MOF2=$\frac{|MO|}{|O{F}_{2}|}$=$\frac{\sqrt{{c}^{2}-{b}^{2}}}{c}$=$\frac{a}{c}$,
在△MOF1中,|MF1|2=|MO|2+|OF1|2-2|MO|•|OF1|•cos∠MOF2
=a2+c2-2ac•(-$\frac{a}{c}$)=3a2+c2
由|MF1|=3|MF2|,可得3a2+c2=9b2=9(c2-a2),
即有c2=$\frac{3}{2}$a2,即e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故答案为:$\frac{\sqrt{6}}{2}$.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和点到直线的距离公式,同时考查余弦定理的运用,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若奇函数y=g(x)与f(x)=2sin(2x+φ)图象关于直线x=$\frac{π}{6}$对称,要得到y=g(x),则可用y=f(x)的图象变换得到(|φ|<$\frac{π}{2}$),需经过的变换是(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,M为CC1的中点,∠ABC=90°,AC=A1A,∠A1AC=60°,AB=BC=2.
(Ⅰ)求证:BA1=BM;
(Ⅱ)求三棱锥C1-A1B1M的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线的标准方程为$\frac{x^2}{4}-\frac{y^2}{16}=1$,则该双曲线的焦点坐标为,(±$2\sqrt{5}$,0)渐近线方程为y=±2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C的焦点为F1,F2,点P是双曲线上任意一点,若双曲线的离心率为2,且|PF1|=2|PF2|,则cos∠PF2F1=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点F作一条渐近线的垂线,垂足为P,线段OP的垂直平分线交y轴于点Q(其中O为坐标原点).若△OFP的面积是△OPQ的面积的4倍,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知某厂每天的固定成本是20000元,每天最大规模的产品量是350件.每生产一件产品,成本增加100元,生产x件产品的收入函数是R(x)=-$\frac{1}{2}$x2+400x,记L(x),P(x)分别为每天的生产x件产品的利润和平均利润 (平均利润=$\frac{总利润}{总产量}$).
(1)每天生产量x为多少时,利润L(x)有最大值?;
(2)每天生产量x为多少时,平均利润P(x)有最大值?若该厂每天生产的最大规模为180件,那么每天生产量x为多少时,平均利润P(x)有最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$所表示的区域为D,M(x,y)是区域D内的点,点A(-1,2),则z=$\overrightarrow{OA}$•$\overrightarrow{OM}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.由曲线x2+y2=2|x|+2|y|围成的图形的面积为8+4π.

查看答案和解析>>

同步练习册答案