【题目】已知函数f(x)为奇函数,当x≥0时,f(x)=
.g(x)=
,
(1)求当x<0时,函数f(x)的解析式;
(2)求g(x)的解析式,并证明g(x)的奇偶性.
【答案】
(1)解:设x<0,则﹣x>0,
此时有f(﹣x)=
.
又∵函数f(x)为奇函数,
∴f(x)=﹣f(﹣x)=﹣
.
∴当x<0时,
.
∴ ![]()
(2)解:函数g(x)解析式为g(x)=
=
,
g(x)的定义是R,关于原点对称,
当x>0时,﹣x<0,
,
当x<0时,﹣x>0,
,
综上所述,函数g(x)为偶函数
【解析】(1)设x<0,则﹣x>0,结合已知与函数是奇函数可得x<0时的解析式,则答案可求;(2)由已知结合(1)写出分段函数解析式,然后利用奇偶性的定义证明g(x)的奇偶性.
【考点精析】本题主要考查了函数的奇偶性的相关知识点,需要掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】若函数f(x)是偶函数,且在(﹣∞,0]上是增函数,又f(2)=0,则xf(x)>0的解集是( )
A.(﹣2,2)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0]∪(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD,E分别为AP的中点.
(Ⅰ)求证:DE垂直于平面PAB;
(Ⅱ)设BC =
,AB=2,求直线EB与平面ABD所成的角的大小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 |
|
|
|
|
|
|
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
附表及公式:
| 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
![]()
(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上者为优分(含80分),请你根据已知条件作出
列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点.已知f(x)=x2+bx+c
(1)若f(x)有两个不动点为﹣3,2,求函数y=f(x)的零点?
(2)若c=
时,函数f(x)没有不动点,求实数b的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查:生产某产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=
x2+x(万元),在年产量不小于8万件时,W(x)=6x+
﹣38(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;
(2)写出当产量为多少时利润最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集为R,集合A=(﹣∞,﹣1)∪(3,+∞),记函数f(x)=
的定义域为集合B
(1)分别求A∩B,A∩RB;
(2)设集合C={x|a+3<x<4a﹣3},若B∩C=C,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com