分析 确定函数在x=0处,函数图象的切线斜率,可得倾斜角,从而可得结论.
解答
解:由题意,函数图象如图所示,函数在[0,1]上为增函数,在[1,2]上为减函数.
设函数在x=0处,切线斜率为k,则k=f'(0)
∵f'(x)=$\frac{1}{2}$•$\frac{-2(x-1)}{\sqrt{3+2x-{x}^{2}}}$,
∴k=f'(0)=$\frac{\sqrt{3}}{3}$,可得切线的倾斜角为30°,
因此,要使旋转后的图象仍为一个函数的图象,旋转θ后的切线倾斜角最多为90°,也就是说,最大旋转角为90°-30°=60°,即θ的最大值为60°.
故答案为:60°
点评 本题考查了导数的几何意义和函数的图象与图象变化等知识点,将函数图象绕原点逆时针旋转θ后,所得曲线仍是一个函数的图象,求角θ的最大值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m<n | B. | m>n | C. | m≤n | D. | m≥n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (1,2) | C. | (2,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | 0~6 | 7 | 8 | 9 | 10 |
| P | 0 | 0.2 | 0.3 | 0.3 | 0.2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com