精英家教网 > 高中数学 > 题目详情
10.某四面体的三视图如图所示,则该四面体的体积为(  )
A.$\frac{8}{3}$B.48C.8D.16

分析 由已知三视图得到几何体是底面为直角三角形,高为4的三棱锥,由图中数据计算体积.

解答 解:由已知三视图得到几何体是三棱锥,其中底面为直角边分别为3,4的直角三角形,棱锥的高为4,所以体积为$\frac{1}{3}×\frac{1}{2}×3×4×4$=8;
故选C.

点评 本题考查了多面体的三视图;求几何体的体积;关键是正确还原几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.现有四个点P1(0,-1),P2(-1,-1),P3(-1,$\frac{\sqrt{3}}{2}$),P4(-1,-$\frac{\sqrt{3}}{2}$),其中只有三个点在椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点M(1,0)的直线l,使得直线l与椭圆C交于A,B两点,线段AB的垂直平分线与x轴交于点N,且满足AB=2$\sqrt{10}$|MN|,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+ax+2.
(1)对任意的x∈R.f(x)>0恒成立,求a的取值范围;
(2)若对于a∈[-1,1],f(x)<-a+5恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,A,B,C的对边分别是a,b,c,且a2sinB+(a2+b2-c2)sinA=0,tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,则B等于(  )
A.$\frac{5π}{24}$B.$\frac{7π}{24}$C.$\frac{5π}{36}$D.$\frac{7π}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.把[a,b]等间隔地插入n-1个点,则第i(i=1,2,3,…,n)个分点xi=$\frac{i}{n}$[b-a],区间长度△x=$\frac{b-a}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2cos\frac{π}{3}x,x≤2000}\\{x-18,x>2000}\end{array}\right.$,则f(f(2 018))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD是正方形,AB⊥PM,在平面四边形AMPD中,PM⊥DM
(1)求证:PM⊥平面CDM
(2)若AD与PM不平行,求证:平面ABCD⊥平面AMPD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x3+$\frac{1}{2}{x^2}$-ax.
(Ⅰ)当a=4时,求f(x)的极值;
(Ⅱ)若f(x)在(1,3)上不单调,求实数a的取值范围.

查看答案和解析>>

同步练习册答案