| A. | $\frac{5π}{24}$ | B. | $\frac{7π}{24}$ | C. | $\frac{5π}{36}$ | D. | $\frac{7π}{36}$ |
分析 利用正弦、余弦定理,化简a2sinB+(a2+b2-c2)sinA=0,求出角C的值,再用B表示出A,代入tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,利用三角恒等变换即可求出B的值.
解答 解:在△ABC中,a2sinB+(a2+b2-c2)sinA=0,
∴a2sinB+2ab•cosC•sinA=0,即a•sinB+2b•cosC•sinA=0,
∴sinA•sinB+2sinB•cosC•sinA=0.
cosC=-$\frac{1}{2}$,且0<C<π,
∴C=$\frac{2π}{3}$.
∴A=$\frac{π}{3}$-B,
又tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,
∴$\frac{sin(\frac{π}{3}-B)}{cos(\frac{π}{3}-B)}$=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,
得sin($\frac{π}{3}$-B)•$\sqrt{2}cosB+sin(\frac{π}{3}-B)$=cos($\frac{π}{3}$-B)•$\sqrt{2}$sinB+cos($\frac{π}{3}$-B),
∴$\sqrt{2}$[sin($\frac{π}{3}$-B)cosB-cos($\frac{π}{3}$-B)sinB]=cos($\frac{π}{3}$-B)-sin($\frac{π}{3}$-B),
即$\sqrt{2}$sin($\frac{π}{3}$-2B)=$\sqrt{2}$sin($\frac{π}{4}-\frac{π}{3}$+B),
∴$\frac{π}{3}$-2B=B-$\frac{π}{12}$,
解得B=$\frac{5π}{36}$.
故选:C.
点评 本题考查了三角恒等变换的应用问题,也考查了正弦、余弦定理的应用问题,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ln2-1 | B. | 1-ln2 | C. | ln2 | D. | -ln2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{{3\sqrt{13}}}{2}+3)π+\sqrt{22}+2$ | B. | $(\frac{{3\sqrt{13}}}{4}+\frac{3}{2})π+\sqrt{22}+2$ | C. | $\frac{{\sqrt{13}}}{2}π+\sqrt{22}$ | D. | $\frac{{\sqrt{13}}}{4}π+\sqrt{22}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com