精英家教网 > 高中数学 > 题目详情
9.在△ABC中,A,B,C的对边分别是a,b,c,且a2sinB+(a2+b2-c2)sinA=0,tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,则B等于(  )
A.$\frac{5π}{24}$B.$\frac{7π}{24}$C.$\frac{5π}{36}$D.$\frac{7π}{36}$

分析 利用正弦、余弦定理,化简a2sinB+(a2+b2-c2)sinA=0,求出角C的值,再用B表示出A,代入tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,利用三角恒等变换即可求出B的值.

解答 解:在△ABC中,a2sinB+(a2+b2-c2)sinA=0,
∴a2sinB+2ab•cosC•sinA=0,即a•sinB+2b•cosC•sinA=0,
∴sinA•sinB+2sinB•cosC•sinA=0.
cosC=-$\frac{1}{2}$,且0<C<π,
∴C=$\frac{2π}{3}$.
∴A=$\frac{π}{3}$-B,
又tanA=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,
∴$\frac{sin(\frac{π}{3}-B)}{cos(\frac{π}{3}-B)}$=$\frac{\sqrt{2}sinB+1}{\sqrt{2}cosB+1}$,
得sin($\frac{π}{3}$-B)•$\sqrt{2}cosB+sin(\frac{π}{3}-B)$=cos($\frac{π}{3}$-B)•$\sqrt{2}$sinB+cos($\frac{π}{3}$-B),
∴$\sqrt{2}$[sin($\frac{π}{3}$-B)cosB-cos($\frac{π}{3}$-B)sinB]=cos($\frac{π}{3}$-B)-sin($\frac{π}{3}$-B),
即$\sqrt{2}$sin($\frac{π}{3}$-2B)=$\sqrt{2}$sin($\frac{π}{4}-\frac{π}{3}$+B),
∴$\frac{π}{3}$-2B=B-$\frac{π}{12}$,
解得B=$\frac{5π}{36}$.
故选:C.

点评 本题考查了三角恒等变换的应用问题,也考查了正弦、余弦定理的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.一个社会调查机构就某地居民的月收入调查了100人,并根据所得数据画出了如图所示的频率分布直方图,则估计这100人的月平均收入为2400元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x+ex-a,g(x)=ln$\sqrt{2x+1}$-4ea-x(其中e为自然对数的底数),若存在实数x0,使f(x0)-g(x0)=4成立,则实数a的值为(  )
A.ln2-1B.1-ln2C.ln2D.-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.随机变量数X~N(1,4),则P(X≥2)=0.2,则P(0<X<2)等于(  )
A.0.3B.0.5C.0.6D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知变量X服从正态分布N(4,σ2)且P(X≥2)=0.6,则P(X>6)=(  )
A.0.4B.0.3C.0.2D.0.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,且底面ABCD是正方形,M为AA1的中点,连接BD,MB,MD,MC1
(1)求证:A1C∥平面BDM;
(2)求证:BD⊥MC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某四面体的三视图如图所示,则该四面体的体积为(  )
A.$\frac{8}{3}$B.48C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,若该几何体的体积为3π+2,则它的表面积是(  )
A.$(\frac{{3\sqrt{13}}}{2}+3)π+\sqrt{22}+2$B.$(\frac{{3\sqrt{13}}}{4}+\frac{3}{2})π+\sqrt{22}+2$C.$\frac{{\sqrt{13}}}{2}π+\sqrt{22}$D.$\frac{{\sqrt{13}}}{4}π+\sqrt{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=2px(p>0),过点T(p,0)且斜率为1的直线与抛物线交于A,B两点,则直线OA,OB的斜率之积为(O为坐标原点)-2.

查看答案和解析>>

同步练习册答案