5£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ-4cos¦È+3¦Ñsin2¦È=0£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±Ïßl¹ýµãM£¨1£¬0£©£¬Çãб½ÇΪ$\frac{¦Ð}{6}$£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÈôÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=x}\\{y¡ä=2y}\end{array}\right.$ºóµÃµ½ÇúÏßC¡ä£¬ÇÒÖ±ÏßlÓëÇúÏßC¡ä½»ÓÚA£¬BÁ½µã£¬Çó|MA|+|MB|£®

·ÖÎö £¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ2-4¦Ñcos¦È+3¦Ñ2sin2¦È=0£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»ÓÉÖ±Ïßl¹ýµãM£¨1£¬0£©£¬Çãб½ÇΪ$\frac{¦Ð}{6}$£¬ÄÜÇó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£®
£¨¢ò£©ÓÉÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=x}\\{y¡ä=2y}\end{array}\right.$ºóµÃµ½ÇúÏßC¡ä£¬Çó³öÇúÏßC¡äΪ£º£¨x-2£©2+y2=4£¬°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßC¡ä£¬µÃ£º${t}^{2}-\sqrt{3}t-3=0$£¬ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôòt1+t2=$\sqrt{3}$£¬t1t2=-3£¬ÓÉ´ËÄÜÇó³ö|MA|+|MB|£®

½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ-4cos¦È+3¦Ñsin2¦È=0£¬¡à¦Ñ2-4¦Ñcos¦È+3¦Ñ2sin2¦È=0£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+3y2=0£¬ÕûÀí£¬µÃ£¨x-2£©2+4y2=4£¬
¡ßÖ±Ïßl¹ýµãM£¨1£¬0£©£¬Çãб½ÇΪ$\frac{¦Ð}{6}$£¬
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{y=1+tcos\frac{¦Ð}{6}}\\{y=tsin\frac{¦Ð}{6}}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tÊDzÎÊý£©£®
£¨¢ò£©¡ßÇúÏßC¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=x}\\{y¡ä=2y}\end{array}\right.$ºóµÃµ½ÇúÏßC¡ä£¬
¡àÇúÏßC¡äΪ£º£¨x-2£©2+y2=4£¬
°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tÊDzÎÊý£©´úÈëÇúÏßC¡ä£º£¨x-2£©2+y2=4£¬µÃ£º
${t}^{2}-\sqrt{3}t-3=0$£¬
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôòt1+t2=$\sqrt{3}$£¬t1t2=-3£¬
¡à|MA|+|MB|=|t1|+|t2|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{3+12}$=$\sqrt{15}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏߵIJÎÊý·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶κ͵ÄÇ󷨣¬Éæ¼°µ½Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯¡¢Î¤´ï¶¨ÀíµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÑù±¾Æ½¾ùÊýΪ$\overline{x}$£¬×ÜÌ寽¾ùÊýΪ¦Ì£¬Ôò£¨¡¡¡¡£©
A£®$\overline{x}$=¦ÌB£®$\overline{x}$¡Ö¦ÌC£®¦ÌÊÇ$\overline{x}$µÄ¹À¼ÆÖµD£®$\overline{x}$ÊǦ̵ĹÀ¼ÆÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôÒ»¸öµ×ÃæÊǵÈÑüÖ±½ÇÈý½ÇÐεÄÖ±ÈýÀâÖùµÄÕýÊÓͼÈçͼËùʾ£¬Æä¶¥µã¶¼ÔÚÒ»¸öÇòÃæÉÏ£¬Ôò¸ÃÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®6¦Ð»ò5¦ÐB£®3¦Ð»ò5¦ÐC£®6¦ÐD£®5¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑ֪ijÌõÇúÏߵIJÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=2£¨t+\frac{1}{t}£©\\ y=2£¨t-\frac{1}{t}£©\end{array}$£¨tÊDzÎÊý£©£¬Ôò¸ÃÇúÏßÊÇ£¨¡¡¡¡£©
A£®Ö±ÏßB£®Ô²C£®ÍÖÔ²D£®Ë«ÇúÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÔÚ¡÷ABCÖУ¬b2+a2-c2£¼0£¬ÇÒb£¾a£¬sinA+$\sqrt{2}$cosA=$\frac{5}{3}$£¬ÔòtanA=£¨¡¡¡¡£©
A£®$\frac{2\sqrt{2}}{3}$»ò$\frac{4\sqrt{2}}{9}$B£®$\frac{\sqrt{2}}{4}$C£®$\frac{7\sqrt{2}}{8}$D£®$\frac{\sqrt{2}}{4}$»ò$\frac{7\sqrt{2}}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈçͼÊÇÒ»¸öÕý·½Ì壬A£¬B£¬CΪÈý¸ö¶¥µã£¬DÊÇÀâµÄÖе㣬ÔòÈýÀâ×¶A-BCDµÄÕýÊÓͼ£¬¸©ÊÓͼÊÇ£¨×¢£ºÑ¡ÏîÖеÄÉÏͼÊÇÕýÊÓͼ£¬ÏÂͼÊǸ©ÊÓͼ£©£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa2=3£¬a4+a7=20£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏîan¼°Ç°nÏîºÍΪSn£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬Ö¤Ã÷£º$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$£¼$\frac{5}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®½«Ô­Ó;«Á¶ÎªÆûÓÍ¡¢²ñÓÍ¡¢ËܽºµÈ¸÷ÖÖ²»Í¬µÄ²úÆ·£¬ÐèÒª¶ÔÔ­ÓͽøÐÐÀäÈ´ºÍ¼ÓÈÈ£¬ÈôÔÚµÚxhʱ£¬Ô­Ó͵Äζȣ¨µ¥Î»£º¡æ£©Îªf£¨x£©=x2-7x+15£¨0¡Üx¡Ü8£©£¬ÔòÔÚµÚ1hʱ£¬Ô­ÓÍζȵÄ˲ʱ±ä»¯ÂÊΪ-5¡æ/h£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÃüÌâ$p£º?x£¾e£¬{£¨{\frac{1}{2}}£©^x}$£¾lnx£»ÃüÌâq£º?a£¾1£¬b£¾1£¬logab+2logba¡Ý2$\sqrt{2}$£¬ÔòÏÂÁÐÃüÌâÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®£¨?p£©¡ÄqB£®p¡ÄqC£®p¡Ä£¨?q£©D£®p¡Å£¨?q£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸