·ÖÎö £¨¢ñ£©ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯Îª¦Ñ2-4¦Ñcos¦È+3¦Ñ2sin2¦È=0£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»ÓÉÖ±Ïßl¹ýµãM£¨1£¬0£©£¬Çãб½ÇΪ$\frac{¦Ð}{6}$£¬ÄÜÇó³öÖ±ÏßlµÄ²ÎÊý·½³Ì£®
£¨¢ò£©ÓÉÇúÏßC¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=x}\\{y¡ä=2y}\end{array}\right.$ºóµÃµ½ÇúÏßC¡ä£¬Çó³öÇúÏßC¡äΪ£º£¨x-2£©2+y2=4£¬°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßC¡ä£¬µÃ£º${t}^{2}-\sqrt{3}t-3=0$£¬ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôòt1+t2=$\sqrt{3}$£¬t1t2=-3£¬ÓÉ´ËÄÜÇó³ö|MA|+|MB|£®
½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ-4cos¦È+3¦Ñsin2¦È=0£¬¡à¦Ñ2-4¦Ñcos¦È+3¦Ñ2sin2¦È=0£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+3y2=0£¬ÕûÀí£¬µÃ£¨x-2£©2+4y2=4£¬
¡ßÖ±Ïßl¹ýµãM£¨1£¬0£©£¬Çãб½ÇΪ$\frac{¦Ð}{6}$£¬
¡àÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{y=1+tcos\frac{¦Ð}{6}}\\{y=tsin\frac{¦Ð}{6}}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tÊDzÎÊý£©£®
£¨¢ò£©¡ßÇúÏßC¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=x}\\{y¡ä=2y}\end{array}\right.$ºóµÃµ½ÇúÏßC¡ä£¬
¡àÇúÏßC¡äΪ£º£¨x-2£©2+y2=4£¬
°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¬£¨tÊDzÎÊý£©´úÈëÇúÏßC¡ä£º£¨x-2£©2+y2=4£¬µÃ£º
${t}^{2}-\sqrt{3}t-3=0$£¬
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬Ôòt1+t2=$\sqrt{3}$£¬t1t2=-3£¬
¡à|MA|+|MB|=|t1|+|t2|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{3+12}$=$\sqrt{15}$£®
µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏߵIJÎÊý·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶κ͵ÄÇ󷨣¬Éæ¼°µ½Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯¡¢Î¤´ï¶¨ÀíµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\overline{x}$=¦Ì | B£® | $\overline{x}$¡Ö¦Ì | C£® | ¦ÌÊÇ$\overline{x}$µÄ¹À¼ÆÖµ | D£® | $\overline{x}$ÊǦ̵ĹÀ¼ÆÖµ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6¦Ð»ò5¦Ð | B£® | 3¦Ð»ò5¦Ð | C£® | 6¦Ð | D£® | 5¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ö±Ïß | B£® | Ô² | C£® | ÍÖÔ² | D£® | Ë«ÇúÏß |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{2\sqrt{2}}{3}$»ò$\frac{4\sqrt{2}}{9}$ | B£® | $\frac{\sqrt{2}}{4}$ | C£® | $\frac{7\sqrt{2}}{8}$ | D£® | $\frac{\sqrt{2}}{4}$»ò$\frac{7\sqrt{2}}{8}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨?p£©¡Äq | B£® | p¡Äq | C£® | p¡Ä£¨?q£© | D£® | p¡Å£¨?q£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com