精英家教网 > 高中数学 > 题目详情
10.已知直线l:$\left\{\begin{array}{l}x=2+tcosα\\ y=tsinα\end{array}$(t为参数),椭圆C:$\left\{\begin{array}{l}x=3cosϕ\\ y=\sqrt{5}sinϕ\end{array}$(φ为参数),F为椭圆C的右焦点.
(1)当α=$\frac{π}{4}$时,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线l和曲线C的极坐标方程;
(2)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值与最小值.

分析 (1)利用三种方程的转化方法,求直线l和曲线C的极坐标方程;
(2)将直线l的参数方程代入椭圆C的普通方程,利用参数的几何意义,即可求|FA|•|FB|的最大值与最小值.

解答 解:(1)当α=$\frac{π}{4}$时,直线l:$\left\{\begin{array}{l}x=2+tcosα\\ y=tsinα\end{array}$的普通方程为x-y-2=0,极坐标方程为ρcosα-ρsinα-2=0;
椭圆C:$\left\{\begin{array}{l}x=3cosϕ\\ y=\sqrt{5}sinϕ\end{array}$(φ为参数)的普通方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1,极坐标方程为5ρ2cos2α+9ρ2sin2α=45.(5分)
(2)将直线l的参数方程代入椭圆C的普通方程,并整理得:(5+4sin2α)t2+20tcosα-25=0.
设点A,B在直线参数方程中对应的参数分别为t1,t2,则
|FA|•|FB|=|t1t2|=$\frac{25}{5+4si{n}^{2}α}$.
当sinα=0时,|FA|•|FB|取最大值5;
当sinα=±1时,|FA|•|FB|取最小值$\frac{25}{9}$.…(5分)

点评 本题考查参数方程化成普通方程,考查学生的计算能力,正确运用参数的几何意义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知0<a1<a2<a3,则使得${({1-{a_i}x})^2}<1({i=1,2,3})$都成立的x的取值范围是(  )
A.$({0,\frac{1}{a_3}})$B.$({0,\frac{2}{a_3}})$C.$({0,\frac{1}{a_1}})$D.$({0,\frac{2}{a_1}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平面向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影为5,则$|\overrightarrow a-2\overrightarrow b|$的模为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图①,这个美妙的螺旋叫做特奥多鲁斯螺旋,是由公元5世纪古希腊哲学家特奥多鲁斯给出的,螺旋由一系列直角三角形组成(图②),第一个三角形是边长为1的等腰直角三角形,以后每个直角三角形以上一个三角形的斜边为直角边,另一个直角边为1.将这些直角三角形在公共顶点处的角依次记为α1,α2,α3,…,则与α1234最接近的角是(  )
参考值:tan55°≈1.428,tan60°≈1.732,tan65°≈2.145,$\sqrt{2}≈1.414$
A.120°B.130°C.135°D.140°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,三边a,b,c的对角分别为A,B,C,若a2+b2=2018c2,则$\frac{2sinAsinBcosC}{{1-{{cos}^2}C}}$=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$|\begin{array}{l}{sinx}&{2cosx}\\{2cosx}&{sinx}\end{array}|$的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于(  )
A.(-∞,-1]B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为(  )
A.$4+\frac{2π}{3}$B.$4+\frac{{2\sqrt{2}π}}{3}$C.$8+\frac{{4\sqrt{2}π}}{3}$D.$8+\frac{{8\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)=\left\{\begin{array}{l}cosx,x≤a\\ \frac{1}{x},x>a\end{array}\right.$的值域为[-1,1],则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(0,1]D.(-1,0)

查看答案和解析>>

同步练习册答案