精英家教网 > 高中数学 > 题目详情
14.若实数x,y满足不等式$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥-2}\end{array}\right.$,则x-y的最大值为(  )
A.-5B.2C.5D.7

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥-2}\end{array}\right.$作出可行域如图:

由图得A(0,-2),
令z=x-y,化为y=x-z,由图可知,当直线y=x-z过A时,直线在y轴上的截距最小,z有最大值为2.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数$y=cos(2x-\frac{π}{4})$的对称中心为($\frac{1}{2}kπ-\frac{π}{4},0$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB-bccosA=3b2
(1)求$\frac{sinA}{sinB}$的值;
(2)若角C为锐角,c=$\sqrt{11}$,sinC=$\frac{2\sqrt{2}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2016年双十一活动结束后,某地区研究人员为了研究该地区在双十一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得频率分布直方图如图所示:
记年龄在[55,65),[65,75),[75,85]对应的小矩形的面积分别是S1,S2,S3,且S1=2S2=4S3
(Ⅰ)以频率作为概率,若该地区双十一消费超过3000元的有30000人,试估计该地区在双十一活动中消费超过3000元且年龄在[45,65)的人数;
(Ⅱ)若按照分层抽样,从年龄在[15,25),[65,75)的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在[15,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右顶点分别为A1,A2,左右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P,若以A1A2为直径的圆与PF2相切,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知圆E:${x^2}+{({y-\frac{1}{2}})^2}=\frac{9}{4}$经过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦点F1,F2,与椭圆C在第一象限的交点为A,且F1,E,A三点共线.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与直线OA(O为原点)平行的直线l交椭圆C于M,N两点.当△AMN的面积取到最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,且椭圆C1经过点A(1,$\frac{3}{2}$),同时F2也是抛物线C2:y2=4x的焦点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)E,F是椭圆C1上两个动点,如果直线AE与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设△ABC的内角A,B,C分别对应边a,b,c.若c2=(a-b)2+6,${S_{△ABC}}=\frac{3}{2}\sqrt{3}$,则角C=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{3}{4}π$D.$\frac{2}{3}π$

查看答案和解析>>

同步练习册答案