| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{3}{4}π$ | D. | $\frac{2}{3}π$ |
分析 由已知利用余弦定理可求cosC=1-$\frac{3}{ab}$,利用三角形面积公式可求sinC=$\frac{3\sqrt{3}}{ab}$,从而利用三角函数恒等变换的应用化简可得sin(C+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,由范围C∈(0,π),可得:C+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),利用正弦函数的图象和性质可求C的值.
解答 解:∵c2=(a-b)2+6,可得:a2+b2-c2=2ab-6,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=1-$\frac{3}{ab}$,①
又∵${S_{△ABC}}=\frac{3}{2}\sqrt{3}$=$\frac{1}{2}$absinC,可得:sinC=$\frac{3\sqrt{3}}{ab}$,②
∴由①②可得:cosC=1-$\frac{\sqrt{3}}{3}$sinC,化简可得:sin(C+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∵C∈(0,π),可得:C+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{4π}{3}$),
∴C+$\frac{π}{3}$=$\frac{2π}{3}$,解得:C=$\frac{π}{3}$.
故选:A.
点评 本题主要考查了余弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | 2 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$或 $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 142 | B. | 124 | C. | 128 | D. | 144 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com