精英家教网 > 高中数学 > 题目详情
16.直线ax-y+$\sqrt{2}$a=0(a≥0)与圆x2+y2=9的位置关系是(  )
A.相交B.相切C.相离D.相切或相离

分析 求出直线恒过的定点,判断定点与圆的位置关系.

解答 解:直线ax-y+$\sqrt{2}$a=0(a≥0),即a(x+$\sqrt{2}$)-y=0,令x+$\sqrt{2}$=0,y=0,可得恒过定点(-$\sqrt{2}$,0),而(-$\sqrt{2}$,0)满足2+02<9,所以直线与圆相交.
故选:A.

点评 本题是基础题,考查直线与圆的位置关系,判断关系的方法是点在圆的内部与外部或圆上是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,已知圆E:${x^2}+{({y-\frac{1}{2}})^2}=\frac{9}{4}$经过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右焦点F1,F2,与椭圆C在第一象限的交点为A,且F1,E,A三点共线.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设与直线OA(O为原点)平行的直线l交椭圆C于M,N两点.当△AMN的面积取到最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示程序框图,若使输出的结果不大于100,则输入的整数k的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设△ABC的内角A,B,C分别对应边a,b,c.若c2=(a-b)2+6,${S_{△ABC}}=\frac{3}{2}\sqrt{3}$,则角C=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{3}{4}π$D.$\frac{2}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设x,y,z均为正实数,且xyz=1,求证:$\frac{1}{{x}^{3}y}$+$\frac{1}{{y}^{3}z}$+$\frac{1}{{z}^{3}x}$≥xy+yz+zx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是定义在R上的奇函数,其导函数为f′(x),若对任意实数x都有x2f′(x)>2xf(-x),则不等式x2f(x)<(3x-1)2f(1-3x)的解集是(  )
A.($\frac{1}{4}$,+∞)B.(0,$\frac{1}{4}$)C.(-∞,$\frac{1}{4}$)D.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),将曲线C1上所有点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标缩短为原来的$\frac{\sqrt{3}}{3}$,得到曲线C2,在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为4ρsin(θ+$\frac{π}{3}$)+$\sqrt{3}$=0.
(1)求曲线C2的极坐标方程及直线l与曲线C2交点的极坐标;
(2)设点P为曲线C1上的任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上一点到两个焦点的距离分别为10和4,且离心率为2,则该双曲线的虚轴长为(  )
A.3B.6C.3$\sqrt{3}$D.6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在△ABC中,D为边BC上一点,AD=6,BD=3,
DC=2.
(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC=$\frac{π}{4}$,求△ADC的面积.

查看答案和解析>>

同步练习册答案