·ÖÎö £¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬ÓÉ$|AB|=2\sqrt{2}$£¬µÃ£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡¢ÙÉèP£¨x£¬y£©£¬ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$´úÈëÖТÙÕûÀíµÃ¶¯µãPµÄ¹ì¼£·½³ÌC1
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬ËùÒÔm2+n2=4£¬ÓÉm+2n=0µÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$¼´¿É£®
½â´ð ½â£º£¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬
¡ß$|AB|=2\sqrt{2}$£¬¡à£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡¢Ù
ÉèP£¨x£¬y£©£¬¡ß$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$
´úÈëÖТÙÕûÀíµÃ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
¶¯µãPµÄ¹ì¼£·½³ÌC1£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬
ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬
ËùÒÔm2+n2=4£¬ÓÉx+2y=0µÃ$y=\frac{1}{2}x$£¬¡à$\frac{m}{n}=\frac{1}{2}$£¬
½âµÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$
ËùÒÔ£¬Ë«ÇúÏß·½³ÌΪ$\frac{{5{y^2}}}{4}-\frac{{5{x^2}}}{16}=1$£®
µãÆÀ ±¾Ì⿼²éÁËÏà¹Øµã·¨Çó¹ì¼£·½³Ì£¬¼°ÒÑ֪˫ÇúÏß½¥½üÏßÇóË«ÇúÏß·½³ÌµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{3}$ | B£® | $\frac{¦Ð}{6}$ | C£® | $\frac{3}{4}¦Ð$ | D£® | $\frac{2}{3}¦Ð$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\overrightarrow{a}$+$\overrightarrow{b}$ | B£® | $\overrightarrow{a}$-$\overrightarrow{b}$ | C£® | 2$\overrightarrow{a}$-$\overrightarrow{b}$ | D£® | $\overrightarrow{a}$-2$\overrightarrow{b}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨$\frac{1}{4}$£¬+¡Þ£© | B£® | £¨0£¬$\frac{1}{4}$£© | C£® | £¨-¡Þ£¬$\frac{1}{4}$£© | D£® | £¨-¡Þ£¬$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ·þÎñÖÊÁ¿ÆÀ·ÖX | X¡Ü5 | 6¡ÜX¡Ü8 | X¡Ý9 |
| µÈ¼¶ | ²»ºÃ | ½ÏºÃ | ÓÅÁ¼ |
| ½±³Í±ê×¼£¨Ôª£© | -1000 | 2000 | 3000 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com