9£®ÉèA£¬B·Ö±ðÊÇÖ±Ïß$y=\frac{{\sqrt{2}}}{2}x$ºÍ$y=-\frac{{\sqrt{2}}}{2}x$Éϵ͝µã£¬ÇÒ$|AB|=2\sqrt{2}$£®ÉèOÎª×ø±êÔ­µã£¬¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®
£¨¢ñ£© Ç󶯵ãPµÄ¹ì¼£·½³ÌC1£»
£¨¢ò£©Ò»Ö±Ë«ÇúÏßC2ÒÔC1µÄÉ϶¥µãΪ½¹µã£¬ÇÒÒ»Ìõ½¥½üÏß·½³ÌΪx+2y=0£¬ÇóË«ÇúÏßC2µÄ·½³Ì£®

·ÖÎö £¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬ÓÉ$|AB|=2\sqrt{2}$£¬µÃ£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡­¢ÙÉèP£¨x£¬y£©£¬ÓÉ$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$´úÈëÖТÙÕûÀíµÃ¶¯µãPµÄ¹ì¼£·½³ÌC1
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬ËùÒÔm2+n2=4£¬ÓÉm+2n=0µÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$¼´¿É£®

½â´ð ½â£º£¨¢ñ£© Éè$A£¨{x_1}£¬\frac{{\sqrt{2}}}{2}{x_1}£©£¬B£¨{x_2}£¬-\frac{{\sqrt{2}}}{2}{x_2}£©$£¬
¡ß$|AB|=2\sqrt{2}$£¬¡à£¨x1-x2£©2+$\frac{1}{2}$£¨x1+x2£©2=8¡­¢Ù
ÉèP£¨x£¬y£©£¬¡ß$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®Ôò$\left\{\begin{array}{l}x={x_1}+{x_2}\\ y=\frac{{\sqrt{2}}}{2}£¨{x_1}-{x_2}£©\end{array}\right.$
´úÈëÖТÙÕûÀíµÃ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
¶¯µãPµÄ¹ì¼£·½³ÌC1£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$£®
£¨¢ò£©ÉèË«ÇúÏß·½³ÌΪ$\frac{y^2}{m^2}-\frac{x^2}{n^2}=1$£¬
ÓÉ£¨¢ñ£©Öª£¬ÍÖÔ²É϶¥µã£¨0£¬2£©£¬
ËùÒÔm2+n2=4£¬ÓÉx+2y=0µÃ$y=\frac{1}{2}x$£¬¡à$\frac{m}{n}=\frac{1}{2}$£¬
½âµÃ${m^2}=\frac{4}{5}$£¬${n^2}=\frac{16}{5}$
ËùÒÔ£¬Ë«ÇúÏß·½³ÌΪ$\frac{{5{y^2}}}{4}-\frac{{5{x^2}}}{16}=1$£®

µãÆÀ ±¾Ì⿼²éÁËÏà¹Øµã·¨Çó¹ì¼£·½³Ì£¬¼°ÒÑ֪˫ÇúÏß½¥½üÏßÇóË«ÇúÏß·½³ÌµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ¶¥µã·Ö±ðΪA1£¬A2£¬×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÒÔF1F2Ϊֱ¾¶µÄÔ²ÓëË«ÇúÏß×óÖ§µÄÒ»¸ö½»µãΪP£¬ÈôÒÔA1A2Ϊֱ¾¶µÄÔ²ÓëPF2ÏàÇУ¬ÔòË«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÏÖÓÐÒ»¸öµ×Ãæ°ë¾¶Îª3cm£¬Ä¸Ïß³¤Îª5cmµÄԲ׶ʵÐÄÌúÆ÷£¬½«Æä¸ßÎÂÈÚ»¯ºóÖý³ÉÒ»¸öʵÐÄÌúÇò£¨²»¼ÆËðºÄ£©£¬Ôò¸ÃÌúÇòµÄ°ë¾¶ÊÇ$\root{3}{9}$cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÍÖÔ²½¹µãÔÚxÖáÉÏ£¬Ï¶¥µãΪD£¨0£¬-1£©£¬ÇÒÀëÐÄÂÊ$e=\frac{{\sqrt{6}}}{3}$£®¾­¹ýµãM£¨1£¬0£©µÄÖ±ÏßLÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©Çó|AM|µÄȡֵ·¶Î§£®
£¨¢ó£©ÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãP£¬Ê¹¡ÏMPA=¡ÏMPB£®Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬C·Ö±ð¶ÔÓ¦±ßa£¬b£¬c£®Èôc2=£¨a-b£©2+6£¬${S_{¡÷ABC}}=\frac{3}{2}\sqrt{3}$£¬Ôò½ÇC=£¨¡¡¡¡£©
A£®$\frac{¦Ð}{3}$B£®$\frac{¦Ð}{6}$C£®$\frac{3}{4}¦Ð$D£®$\frac{2}{3}¦Ð$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬0£©£¬$\overrightarrow{b}$=£¨0£¬1£©£¬ÔòÏÂÁÐÏòÁ¿ÖÐÓëÏòÁ¿2$\overrightarrow{a}$+$\overrightarrow{b}$´¹Ö±µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{a}$+$\overrightarrow{b}$B£®$\overrightarrow{a}$-$\overrightarrow{b}$C£®2$\overrightarrow{a}$-$\overrightarrow{b}$D£®$\overrightarrow{a}$-2$\overrightarrow{b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬Æäµ¼º¯ÊýΪf¡ä£¨x£©£¬Èô¶ÔÈÎÒâʵÊýx¶¼ÓÐx2f¡ä£¨x£©£¾2xf£¨-x£©£¬Ôò²»µÈʽx2f£¨x£©£¼£¨3x-1£©2f£¨1-3x£©µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{1}{4}$£¬+¡Þ£©B£®£¨0£¬$\frac{1}{4}$£©C£®£¨-¡Þ£¬$\frac{1}{4}$£©D£®£¨-¡Þ£¬$\frac{1}{4}$£©¡È£¨$\frac{1}{4}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ä³Ð£ºóÇÚ´¦Îª¸ú×Ùµ÷²é¸ÃУ²ÍÌüµÄµ±ÔµķþÎñÖÊÁ¿£¬¶ÒÏÖ½±³Í£¬´Ó¾Í²ÍµÄѧÉúÖÐËæ»ú³é³ö100λѧÉú¶Ô²ÍÌü·þÎñÖÊÁ¿´ò·Ö£¨5·ÖÖÆ£©£¬µÃµ½ÈçͼÖù״ͼ£®
£¨¢ñ£©´ÓÑù±¾ÖÐÈÎÒâѡȡ2ÃûѧÉú£¬ÇóÇ¡ºÃÓÐ1ÃûѧÉúµÄ´ò·Ö²»µÍÓÚ4·ÖµÄ¸ÅÂÊ£»
£¨¢ò£©ÈôÒÔÕâ100ÈË´ò·ÖµÄƵÂÊ×÷Ϊ¸ÅÂÊ£¬ÔÚ¸ÃÐ£Ëæ»úѡȡ2ÃûѧÉú½øÐдò·Ö£¨Ñ§Éú´ò·ÖÖ®¼äÏ໥¶ÀÁ¢£©¼ÇX±íʾÁ½ÈË´ò·ÖÖ®ºÍ£¬ÇóXµÄ·Ö²¼ÁкÍE£¨X£©£®
£¨¢ó£©¸ù¾Ý£¨¢ò£©µÄ¼ÆËã½á¹û£¬ºóÇÚ´¦¶Ô²ÍÌü·þÎñÖÊÁ¿Çé¿ö¶¨ÎªÈý¸öµÈ¼¶£¬²¢Öƶ¨Á˶ԲÍÌüÏàÓ¦µÄ½±³Í·½°¸£¬Èç±íËùʾ£¬Éèµ±Ô½±½ðΪY£¨µ¥Î»£ºÔª£©£¬ÇóE£¨Y£©£®
 ·þÎñÖÊÁ¿ÆÀ·ÖX X¡Ü5 6¡ÜX¡Ü8 X¡Ý9
 µÈ¼¶ ²»ºÃ ½ÏºÃ ÓÅÁ¼
 ½±³Í±ê×¼£¨Ôª£©-1000 2000 3000

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ä³Ð£ÓÐÈý¸öÐËȤС×飬¼×¡¢ÒÒÁ½ÃûѧÉúÿÈËÑ¡ÔñÆäÖÐÒ»¸ö²Î¼Ó£¬ÇÒÿÈ˲μÓÿ¸öÐËȤС×éµÄ¿ÉÄÜÐÔÏàͬ£¬Ôò¼×¡¢ÒÒ²»ÔÚͬһÐËȤС×éµÄ¸ÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸