精英家教网 > 高中数学 > 题目详情
2.2016年双十一活动结束后,某地区研究人员为了研究该地区在双十一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得频率分布直方图如图所示:
记年龄在[55,65),[65,75),[75,85]对应的小矩形的面积分别是S1,S2,S3,且S1=2S2=4S3
(Ⅰ)以频率作为概率,若该地区双十一消费超过3000元的有30000人,试估计该地区在双十一活动中消费超过3000元且年龄在[45,65)的人数;
(Ⅱ)若按照分层抽样,从年龄在[15,25),[65,75)的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在[15,25)内的概率.

分析 (Ⅰ)由频率分布直方图的性质得(0.004+0.012+0.019+0.030)×10+S1+S2+S3=1,且S1=2S2=4S3.从而得到该地区在双十一活动中消费超过3000元且年龄在[45,65)的频率,由此该地区在双十一活动中消费超过3000元且年龄在[45,65)的人数.
(Ⅱ)年龄在[15,25),[65,75)的频率0.04,0.1,从年龄在[15,25),[65,75)的人群中共抽取7人,年龄在[15,25)的人群中抽取2人,[65,75)的人群抽取5人,再从这7人中随机抽取2人作深入调查,基本事件总数n=${C}_{7}^{2}$=21,至少有1人的年龄在[15,25)内的对立事件是抽取的2人的年龄都在[65,75)内,由此能求出至少有1人的年龄在[15,25)内的概率.

解答 解:(Ⅰ)∵记年龄在[55,65),[65,75),[75,85]对应的小矩形的面积分别是S1,S2,S3,且S1=2S2=4S3
∴(0.004+0.012+0.019+0.030)×10+S1+S2+S3=1,
且S1=2S2=4S3
解得S3=0.05,S2=0.1,S3=0.2,
∴该地区在双十一活动中消费超过3000元且年龄在[45,65)的频率为0.030×10+0.2=0.5,
∴该地区在双十一活动中消费超过3000元且年龄在[45,65)的人数为:0.5×30000=15000人.
(Ⅱ)从年龄在[15,25),[65,75)的频率分别为0.004×10=0.04,0.1,
从年龄在[15,25),[65,75)的人群中共抽取7人,
年龄在[15,25)的人群中抽取:7×$\frac{0.04}{0.04+0.1}$=2人,[65,75)的人群抽取:7×$\frac{0.1}{0.04+0.1}$=5人,
再从这7人中随机抽取2人作深入调查,基本事件总数n=${C}_{7}^{2}$=21,
至少有1人的年龄在[15,25)内的对立事件是抽取的2人的年龄都在[65,75)内,
∴至少有1人的年龄在[15,25)内的概率p=1-$\frac{{C}_{5}^{2}}{{C}_{7}^{2}}$=1-$\frac{11}{21}$.

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.将函数f(x)=cos(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,所得图象对应的函数解析式为y=cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知e是自然对数的底数,实数a是常数,函数f(x)=ex-ax-1的定义域为(0,+∞).
(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;
(2)判断函数f(x)的单调性;
(3)设g(x)=ln(ex+$\frac{e}{3}$x3-1)-lnx,若?x>0,f(g(x))<f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:
非优良优良总计
未设立自习室251540
设立自习室103040
总计354580
(1)能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;
(2)设从该班第一次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为X,从该班第二次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为Y,求X与Y的期望并比较大小,请解释所得结论的实际意义.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,已知AB=2,AC2-BC2=6,则tanC的最大值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在三棱锥A-BCD中,BD⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是(  )
A.2$\sqrt{34}$B.$\frac{25}{2}$C.10D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若实数x,y满足不等式$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥-2}\end{array}\right.$,则x-y的最大值为(  )
A.-5B.2C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,右焦点到右顶点的距离为1.
(1)求椭圆C的标准方程;
(2)是否存在与椭圆C交于A、B两点的直线l:y=kx+m(k∈R),使得以AB为直径的圆过原点?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在棱长为1的正方体ABCD-A1B1C1D1中,M、N分别是AB1、BC1的中点.
(Ⅰ)求证:直线MN∥平面ABCD.
(Ⅱ)求B1到平面A1BC1的距离.

查看答案和解析>>

同步练习册答案