| 非优良 | 优良 | 总计 | |
| 未设立自习室 | 25 | 15 | 40 |
| 设立自习室 | 10 | 30 | 40 |
| 总计 | 35 | 45 | 80 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)求出K2,与临界值比较,即可得出能在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;
(2)求出期望,即可得出结论.
解答 解:(1)由题意,K2=$\frac{80×(25×30-15×10)^{2}}{40×40×35×45}$=$\frac{80}{7}$>7.879,
∴能在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;
(2)X的取值为0,1,2,则
P(X=0)=$\frac{{C}_{25}^{2}}{{C}_{40}^{2}}$=$\frac{5}{13}$,P(X=1)=$\frac{{C}_{25}^{1}{C}_{15}^{1}}{{C}_{40}^{2}}$=$\frac{25}{52}$,P(X=2)=$\frac{{C}_{15}^{2}}{{C}_{40}^{2}}$=$\frac{7}{52}$,
∴E(X)=0×$\frac{5}{13}+1×\frac{25}{52}+2×\frac{7}{52}$=$\frac{3}{4}$.
Y的取值为0,1,2,则:
P(Y=0)=$\frac{{C}_{10}^{2}}{{C}_{40}^{2}}$=$\frac{3}{52}$,P(Y=1)=$\frac{{C}_{10}^{1}{C}_{30}^{1}}{{C}_{40}^{2}}$=$\frac{5}{13}$,P(Y=2)=$\frac{{C}_{30}^{2}}{{C}_{40}^{2}}$=$\frac{29}{52}$,
E(Y)=$0×\frac{3}{52}+1×\frac{5}{13}+2×\frac{29}{52}$=$\frac{3}{2}$.
也即EX<EY,其实际含义即表明设立自习室有效.
点评 本题主要考查概率与统计的应用,利用条件建立随机变量的分布列,考查学生的运算能力,综合性较强.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com