精英家教网 > 高中数学 > 题目详情
17.(1)计算${({\frac{1}{8}})^{-\frac{1}{3}}}+{({lg5})^0}+lg5+lg2$
(2)已知sinα=2cosα,求$\frac{2sinα-3cosα}{4sinα-9cosα}$的值.

分析 (1)利用分数指数幂的运算法则,求得所给式子的值.
(2)利用同角三角的基本关系,求得要求式子的值.

解答 解:(1)${({\frac{1}{8}})^{-\frac{1}{3}}}+{({lg5})^0}+lg5+lg2$=${2}^{-3•(-\frac{1}{3})}$+1+lg5•2=2+1+1=4.
(2)∵sinα=2cosα,∴tanα=2,∴$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{2tanα-3}{4tanα-9}$.

点评 本题主要考查分数指数幂的运算法则,同角三角的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设f(x)=|x-1|+|x+1|,(x∈R)
(Ⅰ)解不等式f(x)≤4;
(Ⅱ)若存在非零实数b使不等式f(x)≥$\frac{|2b+1|+|1-b|}{|b|}$成立,求负数x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的偶函数f(x)满足?x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(x+1)恰有三个零点,则a的取值范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.(0,$\frac{\sqrt{3}}{3}$)C.($\frac{\sqrt{5}}{5}$,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2}{3}$,C为椭圆上位于第一象限内的一点.
(1)若点C的坐标为(2,$\frac{5}{3}$),求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{OC}$,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a=20.1,$b={({\frac{1}{2}})^{-0.4}}$,c=2log72,则a,b,c的大小关系为(  )
A.c<a<bB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知单位圆有一条长为$\sqrt{2}$的弦AB,动点P在圆内,则使得$\overrightarrow{AP}$$•\overrightarrow{AB}$≥2的概率为(  )
A.$\frac{π-2}{4π}$B.$\frac{π-2}{π}$C.$\frac{3π-2}{4π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将函数f(x)=cos(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,所得图象对应的函数解析式为y=cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于函数f(x)=$\frac{x-1}{x+1}$,设函数f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N+,n≥2),令集合M={x|f2016(x)=x,x∈R},则集合M为(  )
A.空集B.实数集C.单元素集D.二元素集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:
非优良优良总计
未设立自习室251540
设立自习室103040
总计354580
(1)能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;
(2)设从该班第一次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为X,从该班第二次月考的所有学生的数学成绩中任取2个,取到优良成绩的个数为Y,求X与Y的期望并比较大小,请解释所得结论的实际意义.
下面的临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案