精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足当x>0时,f(x)>1,且对任意的x、y∈R,有f(x+y)=f(x)•f(y),f(1)=2,求解不等式f(3-2x)>4.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:利用赋值法,先求出f(0),f(2)的值,再判断函数的单调性,再得到不等式解得即可.
解答: 解:∵设x=0,y=1得:f(0+1)=f(0)•f(1),
即f(1)=f(0)•f(1)
∵f(1)>1
∴f(0)=1
对x1,x2∈R,x1<x2,有x2-x1>0
∴f(x2)=f(x1+x2-x1)=f(x1)•f(x2-x1)中有f(x2-x1)>1,
由已知可,得当x1>0时,f(x1)>1>0
当x1=0时,f(x1)=1>0
当x1<0时,f(x1)•f(-x1)=f(x1-x1)=f(0)=1
又∵f(-x1)>1
∴0<f(x1)<1
故对于一切x1∈R,有f(x1)>0
∴f(x2)=f(x1)•f(x2-x1)>f(x1),
∴函数f(x)为增函数.
再令x=y=1,
得f(1+1)=f(1)•f(1),
得f(2)=4,
∵f(3-2x)>4=f(2)
∴3-2x>2
解得x<
1
2

故原不等式的解集为(-∞,
1
2
点评:本题主要考查了抽象函数表达式反映函数性质及抽象函数表达式的应用,函数单调性的定义及其证明,利用函数性质和函数的单调性解不等式的方法,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某市现有住房am2,预计以后的10年中,人口的年增长率为r%,要想10年后人均住房面积达到现有的1.5倍,试问这10年中,平均每年新建住房多少m2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x+2)(1-f(x))=1+f(x),f(2)=1-
3
,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:0<|x-4|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-a)2=4,点A(1,0).
(1)过A得圆C切线存在时,求a范围,并求a=2时的切线方程;
(2)设AM,AN为圆C切线,M,N为切点,|MN|=
4
5
5
时,求MN所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间向量 
a
=(2,-y,2),
b
=(4,2,x),|
a
|2+|
b
|2=44,且
a
b
,x,y∈R,求x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设非零向量
a
b
满足|
a
|=|
b
|=|
a
+
b
|,则
a
a
-
b
的夹角为(  )
A、60°B、30°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理6节课.要求上午第一节不排体育,数学必须徘在上午,微机必须徘在下午,有
 
种不同的排课方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)的定义域为R+,对任意x、y∈R+,都有f(
x
y
)=f(x)-f(y),且x>1时,f(x)<0,又f(
1
2
)=1.
(1)求证:f(x)在定义域单调递减;
(2)解不等式f(x)+f(5-x)≥-2.

查看答案和解析>>

同步练习册答案