| 是否为会员 性别 | 是 | 否 |
| 男生 | 20 | 5 |
| 女生 | 10 | 15 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (I)根据分层抽样原理,计算从50位网民中抽取6人,男生、女生的人数,用列举法求出基本事件数,计算对应的概率值;
(Ⅱ)根据列联表计算观测值K2,对照临界表即可得出结论.
解答 解:(I)根据分层抽样原理,从50位网民中抽取6人,男生有3人,
可记为A、B、C,女生有3人,可记为d、e、f,
现从这6人中随机选取2人,
基本事件是AB、AC、Ad、Ae、Af、BC、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共15种,
选取的2人中有女生的是Ad、Ae、Af、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共12种,
故所求的概率为P=$\frac{12}{15}$=$\frac{4}{5}$;
(Ⅱ)根据列联表,计算观测值K2=$\frac{50{×(20×15-10×5)}^{2}}{25×25×30×20}$≈8.333>7.879,
对照临界表知,在犯错误的概率不超过0.005的前提下认为网民是否为该媒体会员与性别有关.
点评 本题考查了分层抽样原理与古典概型的概率计算问题,也考查了独立性检验的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17π}{6}$ | B. | $\frac{17π}{3}$ | C. | 5π | D. | $\frac{13π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com