精英家教网 > 高中数学 > 题目详情
6.将y=$\frac{2}{x}$的图象沿x轴方向左平移2个单位,再沿y轴方向向下平移1个单位,所得到的函数解析式为y=-$\frac{x}{x+2}$.

分析 变化规律:左加右减,上加下减.

解答 解:按照“左加右减,上加下减”的规律,向左平移2个单位,将抛物线y=$\frac{2}{x}$先变为y=$\frac{2}{x+2}$,
再沿y轴方向向下平移1个单位得到y=$\frac{2}{x+2}$-1,即变为:y=-$\frac{x}{x+2}$.
故答案为:y=-$\frac{x}{x+2}$.

点评 本题考查了函数图象的平移规律,函数解析式的确定,正确运用平移规律是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知一个平行六面体的各棱长都等于2,并且以顶点A为端点的各棱间的夹角都等于60°,则该平行六面体中平面ABB1A1与平面ABCD夹角的余弦值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如表样本频数分布表:
月消费金额(单位:元)[0,100)[100,200)[200,300)[300,400)[400,500)≥500
人数30691032
记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为$\frac{1}{6}$.
(Ⅰ)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;
(Ⅱ)请将下面的2×2列联表补充完整,并判断是否有90%的把握认为“高消费”与“男女性别”有关,说明理由.
高消费非高消费合计
男生102030
女生52530
合计154560
下面的临界值表仅供参考:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在曲线$\left\{\begin{array}{l}{x=1+{t}^{2}+{t}^{4}}\\{y={t}^{3}-3t+2}\end{array}\right.$(t为参数)上的点是(  )
A.(0,2)B.(-1,6)C.(1,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.表是某校某班(共30人)在一次半期考试中的数学和地理成绩(单位:分)
学号123456789101112131415
数学成绩1271361371291171291249910810795107105123113
地理成绩907272747045786284687670547676
 
学号161718192021222324252627282930
数学成绩8610984688069587958604271285040
地理成绩566656604060585058425638404450
将数学成绩分为两个层次:数学I(大于等于100分)与数学Ⅱ(低于100分),地理也分为两个层次:地理I(大于等于67分)与地理Ⅱ(低于67分).
(I)根据这次考试的成绩完成如下2×2联表,运用独立性检验的知识进行探究,可否有99.9%的把握认为“数学成绩与地理成绩有关”?
  地理Ⅰ 地理Ⅱ 
 数学Ⅰ 11  
 数学Ⅱ  15 
    30
(II)从数学与地理成绩分属不同层次的同学中任取两名,求抽到的同学数学成绩都为层次I的概率.
可能用到的公式和参考数据:K2的统计量:K2=$\frac{{({a+b+c+d}){{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
独立性检验临界值表(部分):
 P(K2≥k0 0.050 0.025 0.010 0.005 0.001
 k0 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某媒体对“推迟退休”这一公众关注的问题进行了民意调查,下面是在某两单位得到的数据(人数).
赞同反对合计
企业职工102030
事业职工20525
合计302555
(1)是否有99.9%的把握认为赞同“推迟退休”与职业有关?
(2)用分层抽样的方法从赞同“推迟退休”的人员中随机抽取6人作进一步调查分析,将这6人作为一个样本,从中任选2人,求恰有1名为企业职工和1名事业职工的概率.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x) 为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点在P(3,4),且过点A(2,2)的抛物线的一部分.
(1)求函数f(x) 在(-∞,2)上的解析式,并写出函数f(x)的值域和单调区间;(值域和单调区间直接写,不用给予证明)
(2)若f(x)<log${\;}_{\frac{1}{2}}$k+2 对x∈R恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,上顶点为B,离心率e=$\frac{1}{2}$,若圆x2+y2=$\frac{12}{7}$与直线AB相切.
(1)求椭圆的标准方程;
(2)是否存在过右焦点F的直线l与椭圆交于M,N两点,使得$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值,若存在,求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某网络媒体为了解其市场占有率,随机抽取50位网民,调查他们是否为该网络媒体的会员,结果如下:
 是否为会员
性别
 是否 
 男生 20
 女生 1015 
(I)已按性别采用分层抽样的方式从这50位网民中抽取了6人,为进一步了解他们对该媒体的满意度,需从这6人中随机选取2人进行问卷调查,求选取的2人中有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为网民是否为该媒体会员与性别有关?下面的临界值表供参考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
独立性检验统计量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案