精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=$\sqrt{15}$,PD=$\sqrt{3}$.
(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A所成的平面角的正切值.

分析 (1)利用余弦定理求出BD.推出△ABD是直角三角形,AD⊥BD,然后证明PD⊥BD.可证明BD⊥平面PAD.
(2)说明平面PAD⊥平面ABCD.作PE⊥AD于E,说明∠PDE是PD与底面BCD所成的角,作EF⊥BC于F,连PF,说明∠PFE是二面角P-BC-A的平面角.然后求解二面角P-BC-A所成的平面角的正切值.

解答 (本小题满分12分)
解  (1)由已知AB=4,AD=2,∠BAD=60°,
得BD2=AD2+AB2-2AD•ABcos60°=4+16-2×2×4×$\frac{1}{2}$=12.
AB2=AD2+BD2
∴△ABD是直角三角形,∠ADB=90°,

即AD⊥BD
在△PDB中,PD=$\sqrt{3}$,PB=$\sqrt{15}$,BD=$\sqrt{12}$,
∴PB2=PD2+BD2,故得PD⊥BD.
又PD∩AD=D,∴BD⊥平面PAD.
(2)∵BD⊥平面PAD,BD?平面ABCD,
∴平面PAD⊥平面ABCD.
作PE⊥AD于E,又PE平面PAD,∴PE⊥平面ABCD,
∴∠PDE是PD与底面BCD所成的角,∴∠PDE=60°,
∴PE=PDsin60°=$\sqrt{3}$•$\frac{{\sqrt{3}}}{2}$=$\frac{3}{2}$.
作EF⊥BC于F,连PF,则PF⊥BC,∴∠PFE是二面角P-BC-A的平面角.
又EF=BD=$\sqrt{12}$,∴在Rt△PEF中,
tan∠PFE=$\frac{PE}{EF}$=$\frac{{\frac{3}{2}}}{{2\sqrt{3}}}$=$\frac{{\sqrt{3}}}{4}$.
故二面角P-BC-A所成的平面角的正切值为$\frac{{\sqrt{3}}}{4}$.

点评 本题考查直线与平面垂直,平面与平面垂直,直线与平面市场价以及二面角,考查计算能力空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某网络媒体为了解其市场占有率,随机抽取50位网民,调查他们是否为该网络媒体的会员,结果如下:
 是否为会员
性别
 是否 
 男生 20
 女生 1015 
(I)已按性别采用分层抽样的方式从这50位网民中抽取了6人,为进一步了解他们对该媒体的满意度,需从这6人中随机选取2人进行问卷调查,求选取的2人中有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为网民是否为该媒体会员与性别有关?下面的临界值表供参考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
独立性检验统计量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生[来10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由.
参考数据:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当χ2>2.706时,有90%的把握判定变量A,B有关联;
当χ2>3.841时,有95%的把握判定变量A,B有关联;
当χ2>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=(n+1)log2an+1.证明:$\frac{1}{b_1}$++…+$\frac{1}{{{b_{n-1}}}}$+$\frac{1}{b_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有5名男医生、6名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )
A.60种B.70种C.75种D.150种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知{an}是斐波那契数列,满足a1=1,a2=1,an+2=an+1+an(n∈N*).{an}中各项除以4所得余数按原顺序构成的数列记为{bn},则b2015=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,若曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.直线l与曲线C相交于A、B两点,则|AB|=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在半球O的直径AB的延长线上取一点P,作PC的切半圆O于点C,又经过P任作一直线交半圆O于点M、N,过C作CD⊥AB,垂足为D
(1)求证:M、O、D、N四点共圆;
(2)求证:∠MDC=∠NDC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知四棱锥P-ABCD的三视图如图所示,该四棱锥(  )
A.四个侧面的面积相等
B.四个侧面中任意两个的面积不相等
C.四个侧面中面积最大的侧面的面积为6
D.四个侧面中面积最大的侧面的面积为2$\sqrt{5}$

查看答案和解析>>

同步练习册答案