精英家教网 > 高中数学 > 题目详情
15.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生[来10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由.
参考数据:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当χ2>2.706时,有90%的把握判定变量A,B有关联;
当χ2>3.841时,有95%的把握判定变量A,B有关联;
当χ2>6.635时,有99%的把握判定变量A,B有关联.

分析 (1)根据抽到喜爱打篮球的概率求出喜爱打篮球的总人数,由此补充列联表即可;
(2)根据列联表计算观测值K2,对照临界值表即可得出结论.

解答 解:(1)在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,
所以喜爱打篮球的人数有50×$\frac{3}{5}$=30;
由此补充列联表如下:

喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
(2)根据列联表,计算观测值K2=$\frac{50{×(20×15-10×5)}^{2}}{25×25×30×20}$≈8.333>6.635,
对照临界值表知,有99%的把握认为喜爱打篮球与性别有关.

点评 本题考查了列联表与独立性检验的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{17π}{6}$B.$\frac{17π}{3}$C.D.$\frac{13π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x的方程4x2+4(k+2)x+(2k2+2k+1)=0的两实根为α,β,则(α+1)(β+1)的取值范围是[-$\frac{7}{8}$,$\frac{9}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点P(2,1)作圆x2+y2=1的两条切线PA,PB,其中A、B为切点,求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大型企业人力资源部为了研究企业员工工作态度和对待企业改革态度的关系,经过调查得到如下列联表:
态度积极支持企业改革不太支持企业改革总计
工作积极544094
工作一般326395
总计86103189
根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为工作态度与对待企业改革态度之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足y=|x-1|+|x+2|,-3≤x≤3,试求$\frac{y-1}{x+4}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,且a2=2,S11=66.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求证:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=$\sqrt{15}$,PD=$\sqrt{3}$.
(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A所成的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.小明在“欧洲七日游”的游玩中对某著名建筑物的景观记忆犹新,现绘制该建筑物的三视图如图所示,若网格纸上小正方形的边长为1,则小明绘制的建筑物的体积为(  )
A.16+8πB.64+8πC.64+$\frac{8π}{3}$D.16+$\frac{8π}{3}$

查看答案和解析>>

同步练习册答案