精英家教网 > 高中数学 > 题目详情
3.过点P(2,1)作圆x2+y2=1的两条切线PA,PB,其中A、B为切点,求直线AB方程.

分析 由题意可知O,A,P,B四点共圆,求出OP中点坐标,由两点间的距离公式求出|OP|,得到以OP为直径的圆的方程,与已知圆的方程作差得答案.

解答 解:如图,

∵PA,PB是圆x2+y2=1的两条切线,∴O,A,P,B四点共圆,
OP中点M(1,$\frac{1}{2}$),|OP|=$\sqrt{{2}^{2}+{1}^{2}}=\sqrt{5}$,
则以M为圆心,以OP为直径的圆的方程为$(x-1)^{2}+(y-\frac{1}{2})^{2}=(\frac{\sqrt{5}}{2})^{2}$,
整理得:x2+y2-2x-y=0.
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1①}\\{{x}^{2}+{y}^{2}-2x-y=0②}\end{array}\right.$,①-②得:2x+y-1=0.
∴直线AB方程为2x+y-1=0.

点评 本题考查直线与圆的位置关系的应用,训练了过圆的两切点的直线的求法,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,上顶点为B,离心率e=$\frac{1}{2}$,若圆x2+y2=$\frac{12}{7}$与直线AB相切.
(1)求椭圆的标准方程;
(2)是否存在过右焦点F的直线l与椭圆交于M,N两点,使得$\frac{1}{|MF|}$+$\frac{1}{|NF|}$为定值,若存在,求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某网络媒体为了解其市场占有率,随机抽取50位网民,调查他们是否为该网络媒体的会员,结果如下:
 是否为会员
性别
 是否 
 男生 20
 女生 1015 
(I)已按性别采用分层抽样的方式从这50位网民中抽取了6人,为进一步了解他们对该媒体的满意度,需从这6人中随机选取2人进行问卷调查,求选取的2人中有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为网民是否为该媒体会员与性别有关?下面的临界值表供参考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
独立性检验统计量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx+$\frac{a}{x-1}$(a为常实数)
(Ⅰ)若?x0∈[e,e2],(e为自然对数的底数,且e≈2.71828…),使得f(x0)>0,求实数a的取值范围;
(Ⅱ)若实数a>0,函数f(x)在(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>2e-$\frac{4}{3}$(e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,PA与圆O相切于点A,割线PO与圆O交于C,D两点,DE垂直直径AB于E,且2OE=OB=1,则PC等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.考查某班学生数学、外语成绩得到2×2列联表如表:
 类别数优  数差总计 
 外优 34 17 51
 外差 15 19 34
 总计 49 36 85
那么,随机变量K2的观测值k等于(  )
A.10.3B.8C.4.25D.9.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生[来10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由.
参考数据:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当χ2>2.706时,有90%的把握判定变量A,B有关联;
当χ2>3.841时,有95%的把握判定变量A,B有关联;
当χ2>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=(n+1)log2an+1.证明:$\frac{1}{b_1}$++…+$\frac{1}{{{b_{n-1}}}}$+$\frac{1}{b_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在半球O的直径AB的延长线上取一点P,作PC的切半圆O于点C,又经过P任作一直线交半圆O于点M、N,过C作CD⊥AB,垂足为D
(1)求证:M、O、D、N四点共圆;
(2)求证:∠MDC=∠NDC.

查看答案和解析>>

同步练习册答案