精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的前n项和为Sn,且a2=2,S11=66.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求证:b1+b2+…+bn<1.

分析 (1)通过S11=66可知a6=6,结合a2=2可知公差d=1,进而可得结论;
(2)通过(1)裂项、并项相加即得结论.

解答 (1)解:∵S11=11a6=66,∴a6=6,
设公差为d,则a6-a2=4d=4,即d=1,
∴an=a2+(n-2)d=2+(n-2)×1=n;
(2)证明:由(1)得:${b_n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
∴${b_1}+{b_2}+…+{b_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})=1-\frac{1}{n+1}$,
∴b1+b2+…+bn<1.

点评 本题是一道关于数列与不等式的综合题,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求解下列关于x的不等式:(1)x2-2x+a≤0;(2)2x2-ax+2a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,PA与圆O相切于点A,割线PO与圆O交于C,D两点,DE垂直直径AB于E,且2OE=OB=1,则PC等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如表的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生[来10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由.
参考数据:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B是没有关联的;
当χ2>2.706时,有90%的把握判定变量A,B有关联;
当χ2>3.841时,有95%的把握判定变量A,B有关联;
当χ2>6.635时,有99%的把握判定变量A,B有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设各项为正的数列{an}中lgan+1lgan+1=lg$\frac{{a}_{n+1}}{{a}_{n}}$,若a1=100,则a11=$1{0}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=(n+1)log2an+1.证明:$\frac{1}{b_1}$++…+$\frac{1}{{{b_{n-1}}}}$+$\frac{1}{b_n}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有5名男医生、6名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有(  )
A.60种B.70种C.75种D.150种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,直线l的参数方程是$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,若曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ-2ρsinθ-3=0.直线l与曲线C相交于A、B两点,则|AB|=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=3+3sinθ}\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程以及直线l的普通方程;
(2)若直线l与曲线C交于B、D两点,当|BD|取到最小值时,求a的值.

查看答案和解析>>

同步练习册答案