17£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=3+3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÇúÏßCµÄ¼«×ø±ê·½³ÌÒÔ¼°Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚB¡¢DÁ½µã£¬µ±|BD|È¡µ½×îСֵʱ£¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©Çó³öÇúÏßCµÄÆÕͨ·½³Ì£¬ÔÙת»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÅжÏÖ±ÏßlµÄ¶¨µãA£¨-1£¬1£©ÓëÔ²CµÄλÖùØÏµµÃ³öµ±AC¡Ílʱ£¬|BD|×îС£®ÀûÓÃбÂʵĹØÏµÁз½³Ì½â³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄÆÕͨ·½³ÌΪx2+£¨y-3£©2=9£¬¼´x2+y2=6y£¬
¡àÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=6¦Ñsin¦È£¬¼´¦Ñ=6sin¦È£®
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡à$\left\{\begin{array}{l}{x+1=at}\\{y-1=t}\end{array}\right.$£¬
¡àÖ±ÏßlµÄÆÕͨ·½³Ìx+1=a£¨y-1£©£¬¼´x-ay+a+1=0£®
£¨2£©ÇúÏßCµÄÔ²ÐÄΪC£¨0£¬3£©£¬ÉèA£¨-1£¬1£©£¬ÔòÖ±Ïßlºá¹ýµãA£®
¡ß|AC|=$\sqrt{1+4}$=$\sqrt{5}$£¼3£¬
¡àAÔÚÔ²CÄÚ²¿£¬
¡àÖ±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö½»µã£¬ÇÒµ±AC¡Ílʱ£¬|BD|È¡µÃ×îСֵ£®
¡àkAC=$\frac{3-1}{0+1}$=2£¬Ö±ÏßlµÄбÂÊΪ$\frac{1}{a}$£¬
¡à$\frac{2}{a}$=-1£¬½âµÃa=-2£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì£¬²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒa2=2£¬S11=66£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãbn=$\frac{1}{{{a_n}{a_{n+1}}}}$£¬ÇóÖ¤£ºb1+b2+¡­+bn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Ë«ÇúÏß$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ½¹µãΪF£¬¹ýFÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëË«ÇúÏߵĽ¥½üÏßÔÚµÚÒ»ÏóÏÞ½»ÓÚµãA£¬µãOÎª×ø±êÔ­µã£¬µãHÂú×ã$\overrightarrow{FH}$•$\overrightarrow{OA}$=0£¬$\overrightarrow{OA}$=4$\overrightarrow{OH}$£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ð¡Ã÷ÔÚ¡°Å·ÖÞÆßÈÕÓΡ±µÄÓÎÍæÖжÔijָÃû½¨ÖþÎïµÄ¾°¹Û¼ÇÒäÓÌУ¬ÏÖ»æÖƸý¨ÖþÎïµÄÈýÊÓͼÈçͼËùʾ£¬ÈôÍø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬ÔòСÃ÷»æÖƵĽ¨ÖþÎïµÄÌå»ýΪ£¨¡¡¡¡£©
A£®16+8¦ÐB£®64+8¦ÐC£®64+$\frac{8¦Ð}{3}$D£®16+$\frac{8¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ$\frac{{S}_{6}}{{S}_{3}}$=28£¬a3=9£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ã$\frac{{a}_{n}}{{3}^{n}}$=$\frac{1}{{b}_{n}£¨{n}^{2}+n£©}$£¬ÇóÊýÁÐ{an+bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚµÈÑüÌÝÐÎABCDÖУ¬AB¡ÎCD£¬AD=DC=CB=CF=1£¬¡ÏABC=60¡ã£¬ËıßÐÎACFEΪ¾ØÐΣ¬µãMΪÏß¶ÎEFÖÐµã£¬Æ½ÃæACFE¡ÍÆ½ÃæABCD£®
£¨¢ñ£©ÇóÖ¤£ºBC¡ÍAM£»
£¨¢ò£©ÇóµãAµ½Æ½ÃæMBCµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬ÔÚ¡÷ABCÖУ¬CDÊÇ¡ÏACBµÄ½Çƽ·ÖÏߣ¬¡÷ADCµÄÍâ½ÓÔ²½»Ïß¶ÎBCÓÚµãE£¬BE=3AD£®
£¨1£©ÇóÖ¤£ºAB=3AC£» 
£¨2£©µ±AC=4£¬AD=3ʱ£¬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýf£¨x£©=$\frac{1}{\sqrt{2-x}}$+lg£¨1+x£©µÄ¶¨ÒåÓòÊÇ£¨¡¡¡¡£©
A£®£¨-2£¬-1£©B£®£¨-1£¬+¡Þ£©C£®£¨-1£¬2£©D£®£¨-¡Þ£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ë«ÇúÏßmx2-3y2=3mµÄÀëÐÄÂÊeÊÇ·½³Ì2x2-5x+2=0µÄÒ»¸ö¸ù£¬Çó£º
£¨1£©´ËË«ÇúÏßµÄÐéÖáµÄ³¤£®
£¨2£©ÓëË«ÇúÏß¼°Ë«ÇúÏßµÄÁ½½¥½üÏß¶¼ÏàÇеÄÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸