精英家教网 > 高中数学 > 题目详情
4.如图,在四边形ABCD中,AB=CD=1,BC=$\sqrt{3}$,且∠B=90°,∠BCD=120°,记向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2\sqrt{3}}{3}\overrightarrow{a}$-(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$B.-$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$C.-$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1-$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$D.$\frac{2\sqrt{3}}{3}\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{b}$

分析 作DE⊥AB于E,CF⊥DE于F,转化$\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}$,求解即可.

解答 解:作DE⊥AB于E,CF⊥DE于F,
AB=CD=1,BC=$\sqrt{3}$,且∠B=90°,∠BCD=120°,记向量$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AC}=\overrightarrow{b}$,
所以$\overrightarrow{EF}=\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}$=$\overrightarrow{b}-\overrightarrow{a}$,CF=BE=CD×cos30°=$\frac{\sqrt{3}}{2}$,DF=$\frac{1}{2}$,所以$\overrightarrow{DE}=(1+\frac{\sqrt{3}}{6})\overrightarrow{BC}$,
则$\overrightarrow{AD}$=$\overrightarrow{AE}+\overrightarrow{ED}$=(1-$\frac{\sqrt{3}}{2}$)$\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)$\overrightarrow{BC}$=(1-$\frac{\sqrt{3}}{2}$)$\overrightarrow{a}$+(1+$\frac{\sqrt{3}}{6}$)($\overrightarrow{b}-\overrightarrow{a}$)=$-\frac{2\sqrt{3}}{3}\overrightarrow{a}+(1+\frac{\sqrt{3}}{6})\overrightarrow{b}$;
故选B.

点评 本题考查向量在几何中的应用,准确利用已知条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,若动点P(a,b)到直线l1:y=x,l2:y=-x+1的距离分别为d1,d2,且满足d1+2d2=2$\sqrt{2}$,则a2+b2的最大值为$\frac{17}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线x+y-k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|=\frac{{\sqrt{3}}}{3}|{\overrightarrow{AB}}|$,则实数k=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.化简:$\frac{sin(θ-π)si{n}^{2}(θ+\frac{π}{2})tan(θ+3π)}{cos(2π-θ)cos(-\frac{3π}{2}+θ)sin(π+θ)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知结合集合A={x|1≤3x<9},B={y|y=sinx,x∈R},则A∩B=(  )
A.[0,1)B.[0,1]C.(0,1)D.[-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{3}$x3-tx2+(2t2-1)x+1,g(x)=e2x-2tex+2.
(1)若f(x)存在单调递减区间,求实数t的取值范围;
(2)设函数F(x)=g(x)+f′(x),若对于任意的实数x和t都有F(x)≥m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1所示的茎叶图是青年歌手电视大奖赛中7位评委给参加最后决赛的两位选手甲、乙评定的成绩,程序框图(图2)用来编写程序统计每位选手的成绩(各评委所给有效分数的平均值),试根据下面条件回答下列问题:

(1)根据茎叶图,乙选手的成绩中,中位数和众数分别是多少?
(2)在程序框图中,用k表示评委人数,用a表示选手的最后成绩(各评委所给有效分数的平均值).那么图中①②处应填什么?“S1=S-max-min”的含义是什么?
(3)根据程序框图,甲、乙的最后成绩分别是多少?
(4)从甲、乙的有效分数中各取一个分数分别记作为x,y,若甲、乙的最后成绩分别是a,b,求“|x-a|≤1且|y-b|≤1”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以下关于命题的说法正确的有②③(填写所有正确命题的序号).
①“若log2a>0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数”是真命题;
②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;
③命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.
④命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点A(1,2)且垂直于直线2x+y-5=0的直线方程为x-2y+3=0.

查看答案和解析>>

同步练习册答案