,或
:设
,
,
.
(1)当点
在
轴上方时,若
的斜率存在,则
.
.
由
得
.
化简得
.
若
斜率不存在不能有
.
若
的斜率不存在,即
,
是等腰直角三角形,点
也满足方程
.
(2)当点
在
轴下方时,
,
,同理可得上述方程.
(3)当点
在
轴上时,点
在
两点之间的线段上,都满足
,
方程
.
综上可知,所求动点
的轨迹方程为
,或
.
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:单选题
抛物线
y=
x2的一组斜率为2的平行弦的中点的轨迹是( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
四点都在椭圆
上,
为椭圆在
轴正半轴上的焦点.已知
与
共线,
与
共线,且
.求四边形
的面积的最小值和最大值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知椭圆
的中心在坐标原点,左顶点
,离心率
,
为右焦点,过焦点
的直线交椭圆
于
、
两点(不同于点
).
(Ⅰ)求椭圆
的方程;
(Ⅱ)当
时,求直线
PQ的方程;
(Ⅲ)判断
能否成为等边三角形,并说明理由.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
如图,直线
和
相交于点
,点
,以
为端点的曲线段
上的任意一点到
的距离与到点
的距离相等,若
为锐角三角形,
,且
,建立适当的坐标系,求曲线段
的方程.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知点
到两个定点
距离的比为
,点
到直线
的距离为1.求直线
的方程.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(本小题满分14分)
如图,已知圆
是椭圆
的内接△
的内切圆, 其中
为椭圆的左顶点.
(1)求圆
的半径
;
(2)过点
作圆
的两条切线交椭圆于
两点,
证明:直线
与圆
相切.
查看答案和解析>>