精英家教网 > 高中数学 > 题目详情
如图,有一个形如六边形的点阵,它的中心是一个点(算第1层),第2层每边有两个点,第3层每边有三个点,依此类推.如果一个六边形点阵共有169个点,那么它一共有
 
层.
考点:归纳推理
专题:常规题型
分析:先根据条件对每一层的点的个数进行列举,然后通过归纳推理,得到各层的点的个数的一个规律,再利用这个规律求出共有n层时点的总数,结合条件,求出图形的层数.
解答: 解:第一层有点数为:1,
第二层有点数为:6,
第三层有点数为:(顶点+边的中点)6+6=2×6,
第四层有点的个数为:(在第三层基础上,各边多一点)6+6+6=3×6,
第五层有点的个数为:(在第四层基础上,各边多一点)6+6+6+6=4×6,

∴第n(n≥2,n∈N*)层有点的个数为:(在第n-1层基础上,各边多一点)6(n-1).
设一个图形共有n(n≥2,n∈N*)层时,共有的点数为:
1+6+6+…+6(n-1)=1+
6+6(n-1)
2
×n
=3n2-3n+1
由题意得:3n2-3n+1=169,
∴(n+7)(n-8)=0.
∵n≥2,n∈N*
∴n=8.
故一共有8层.
故答案为:8.
点评:本题考查了归纳推理知识,要求先列举,后归纳,再应用.解题的关键在于归纳出各层点数的规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三点A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2,且0≤
OP
OB
≤2,则动点P到点C的距离小于
1
5
的概率为(  )
A、
π
20
B、1-
π
20
C、
19π
20
D、1-
19π
20

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.
(1)求证:A′D⊥EF;
(2)求A′到面EFD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别是F1,F2,过F1垂直于x轴的直线与E相交于A,B 两点,且|AB|=3
2
,离心率为
2
2

(1)求椭圆E的方程;
(2)过焦点F2作与坐标轴不垂直的直线l交椭圆E于C,D两点,点M是点C关于x轴的对称点,在x轴上是否存在一个定点N使得D,M,N三点共线?若存在,求出点N坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)若函数f(x)=
x
1+x2
,又记:f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,3,…,则f2014(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和为Sn,且
an
2
Sn
2
an+1
2
数列n(∈N*
(1)求数列{an}的通项公式;
(2)设bn=
an
2n
数列{bn}中是否存在正整数对(m,n),当m<n时使得{bn}中的三项b1,bm,bn ,成等差数列.若存在,求出m,n;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

[
n
]表示不超过
n
的最大整数.
S1=[
1
]
+[
2
]
+[
3
]
=3,
S2=[
4
]
+[
5
]
+[
6
]
+[
7
]
+[
8
]
=10,
S3=[
9
]
+[
10
]
+[
11
]
+[
12
]
+[
13
]
+[
14
]
+[
15
]
=21,…,
那么Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若某程序框图如图所示,则该程序运行后输出的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是(  )
A、28B、29C、36D、37

查看答案和解析>>

同步练习册答案