精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-cx,x∈[-1,1].
(I)若a=4,c=3,求证:对任意x∈[-1,1],恒有|f(x)|≤1;
(II)若对任意x∈[-1,1],恒有|f(x)|≤1,求证:|a|≤4.
证明:(I)由a=4,c=3,得f(x)=4x3-3x,
于是f′(x)=12x2-3,
令f′(x)=0,可得x=±
1
2

∴当-1<x<-
1
2
1
2
<x<1,时f′(x)>0,
当-
1
2
<x<
1
2
时,f′(x)<0,
∴函数f(x)的增区间为(-1,-
1
2
),(
1
2
,1),减区间(-
1
2
1
2
),
又f(-1)=-1,f(-
1
2
)=1,f(1)=1,f(
1
2
)=-1,
故对任意x∈[-1,1],恒有-1≤f(x)≤1,
即对任意x∈[-1,1],恒有|f(x)|≤1.(7分)
(II)证明:由f(x)=ax3-cx可得,
f(1)=a-c,f(
1
2
)=
a
8
-
c
2

因此f(1)-2f(
1
2
)=
3a
4

由|
3a
4
|=|f(1)-2f(
1
2
)|≤|f(1)|+2|f(
1
2
)|
又对任意x∈[-1,1],恒有|f(x)|≤1,
∴|
3a
4
|≤3,可得|a|≤4.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案