精英家教网 > 高中数学 > 题目详情
2.如图,二面角α-l-β的大小为60°,A∈β,C∈α,且AB、CD都垂直于棱l,分别交棱l于B、D.已知BD=1,AB=2,CD=3,则AC=2$\sqrt{2}$.

分析 根据二面角的大小,利用向量的数量积的应用即可求AC的长度

解答 解:由题意知$\overrightarrow{AB}$⊥$\overrightarrow{BD}$,$\overrightarrow{BD}$⊥$\overrightarrow{DC}$,即$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,$\overrightarrow{BD}$•$\overrightarrow{DC}$=0,<$\overrightarrow{DC}$,$\overrightarrow{BA}$>=60°,
∵$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$+$\overrightarrow{DC}$,
∴|$\overrightarrow{AC}$|2=($\overrightarrow{AB}$+$\overrightarrow{BD}$+$\overrightarrow{DC}$)2=|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2+|$\overrightarrow{DC}$|2+2$\overrightarrow{AB}$•$\overrightarrow{BD}$+2$\overrightarrow{DC}$•$\overrightarrow{AB}$+2$\overrightarrow{BD}$′$\overrightarrow{DC}$=|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2+|$\overrightarrow{DC}$|2+2$\overrightarrow{DC}$•$\overrightarrow{AB}$,
∵BD=1,AB=2,CD=3,
∴|$\overrightarrow{AC}$|2=|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2+|$\overrightarrow{DC}$|2+2$\overrightarrow{DC}$•$\overrightarrow{AB}$
=4+9+1+2×3×2cos120°,
=14-6=8,
则|$\overrightarrow{CA}$|=$\sqrt{8}$=2$\sqrt{2}$,
即AC=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.

点评 本题主要考查向量数量积的应用,结合二面角的大小运用向量法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求证:$\sqrt{a}$-$\sqrt{a-2}$<$\sqrt{a-1}$-$\sqrt{a-3}$(a≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知角α的顶点为坐标原点,始边为x轴正半轴,终边过点P(-1,3),则cos2α的值为-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.求边长为3,4,5的直角三角形的内切圆半径的算法为:
第一步 输入a=3,b=4,c=5(或a=4,b=3,c=5);
第二步 计算r=$\frac{a+b-c}{2}$;
第三步 输出r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,C,D两点均在x轴下方,当CD的斜率为-1时,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AB=AC=1,点P是棱BB1上一点,满足$\overrightarrow{BP}=λ\overrightarrow{B{B_1}}$(0≤λ≤1).
(1)若λ=$\frac{1}{3}$,求直线PC与平面A1BC所成角的正弦值;
(2)若二面角P-A1C-B的正弦值为$\frac{2}{3}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示的几何体中,2CC1=3AA1=6,CC1⊥平面ABCD,且AA1⊥平面ABCD,正方形ABCD的边长为2,E为棱A1D中点,平面ABE分别与棱C1D,C1C交于点F,G.
(Ⅰ)求证:AE∥平面BCC1
(Ⅱ)求证:A1D⊥平面ABE;
(Ⅲ)求二面角D-EF-B的大小,并求CG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某几何体的三视图如图所示,则该几何体的体积为$\frac{π+1}{3}$.

查看答案和解析>>

同步练习册答案