精英家教网 > 高中数学 > 题目详情
20.如图所示的一块长方体木料,E、F分别为底边AB、BC的中点,经过平面A1B1C1D1上一点P,画一条直线与直线EF平行,应该怎样画线?

分析 连接A1C1,过P作A1C1的平行线l,则可得结论.

解答 解:连接A1C1,过P作A1C1的平行线l,则直线l与直线EF平行.

点评 本题考查直线与直线平行,考查学生的作图能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+alnx(a∈R,x∈[1,e]).
(1)若a=-4时,求函数f(x)的最大值及相应的x的值;
(2)讨论方程f(x)=0的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作一个以5cm为单位长度的圆,然后分别作出225°,330°角的正弦线,余弦线,正切线,量出它们的长度,从而写出这些角的正弦值、余弦值、正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,AB=3,AC=$\sqrt{3}$,点G是△ABC的重心,$\overrightarrow{AG}$•$\overrightarrow{BC}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在R上的函数f(x)=x2+2ax+7在(-∞,2]上是减函数,且对任意的x1,x2∈[a+1,1],总有|f(x1)-f(x2)|≤21,则实数a的最大值与最小值之和是(  )
A.-4B.-5C.-6D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的导数.
(1)y=10;
(2)y=x10
(3)y=$\root{3}{{x}^{2}}$;
(4)y=$\frac{1}{\root{3}{{x}^{2}}}$;
(5)y=3x
(6)y=log5x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,若A-B>70°,且sinAcosB=$\frac{\sqrt{3}}{2}$+cosAsinB,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定点A(0,-4),O为坐标原点,以OA为直径的圆O的方程是(  )
A.(x+2)2+y2=4B.(x+2)2+y2=16C.x2+(y+2)2=4D.x2+(y+2)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式为an=$\frac{1}{\sqrt{5}}$[($\frac{1+\sqrt{5}}{2}$)n-($\frac{1-\sqrt{5}}{2}$)n],n∈N*.记Sn=C${\;}_{n}^{1}$a1+C${\;}_{n}^{2}$a2+…+C${\;}_{n}^{n}$an
(1)求S1,S2的值;
(2)求所有正整数n,使得Sn能被8整除.

查看答案和解析>>

同步练习册答案