【题目】PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35μg/m3以下空气质量为一级,在35μg/m3~75μg/m3之间空气质量为二级,在75μg/m3以上空气质量为超标.如图是某市2019年12月1日到10日PM2.5日均值(单位:μg/m3)的统计数据,则下列叙述不正确的是( )
![]()
A.这10天中,12月5日的空气质量超标
B.这10天中有5天空气质量为二级
C.从5日到10日,PM2.5日均值逐渐降低
D.这10天的PM2.5日均值的中位数是47
科目:高中数学 来源: 题型:
【题目】已知椭圆
与抛物线
有共同的焦点
,且两曲线的公共点到
的距离是它到直线
(点
在此直线右侧)的距离的一半.
(1)求椭圆
的方程;
(2)设
为坐标原点,直线
过点
且与椭圆交于
两点,以
为邻边作平行四边形
.是否存在直线
,使点
落在椭圆
或抛物线
上?若存在,求出点
坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形
的对角线
交于点
,点
为线段
的中点,
,
,将三角形
沿线段
折起到
的位置,
,如图2所示.
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中
,
平面
,
,
,且
,
,![]()
![]()
(1)求证:
;
(2)在线段
上,是否存在一点
,使得二面角
的大小为
,如果存在,求
与平面
所成的角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为49.5尺,夏至、大暑、处暑三个节气晷长之和为10.5尺,则立秋的晷长为( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
,
,
,
分别为
,
的中点
是由
绕直线
旋转得到,连结
,
,
.
![]()
(1)证明:
平面
;
(2)若
,棱
上是否存在一点
,使得
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在
中,
,
,
,
分别为
,
的中点
是由
绕直线
旋转得到,连结
,
,
.
![]()
(1)证明:
平面
;
(2)若
,棱
上是否存在一点
,使得
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 | [0,200] | (200,400] | (400,600] |
1(优) | 2 | 16 | 25 |
2(良) | 5 | 10 | 12 |
3(轻度污染) | 6 | 7 | 8 |
4(中度污染) | 7 | 2 | 0 |
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 | 人次>400 | |
空气质量好 | ||
空气质量不好 |
附:
,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com