精英家教网 > 高中数学 > 题目详情

【题目】PM2.5是空气质量的一个重要指标,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35μg/m3以下空气质量为一级,在35μg/m375μg/m3之间空气质量为二级,在75μg/m3以上空气质量为超标.如图是某市2019121日到10PM2.5日均值(单位:μg/m3)的统计数据,则下列叙述不正确的是(

A.10天中,125日的空气质量超标

B.10天中有5天空气质量为二级

C.5日到10日,PM2.5日均值逐渐降低

D.10天的PM2.5日均值的中位数是47

【答案】C

【解析】

先对图表信息进行分析,再由频率分布折线图逐一检验即可得解.

解:由图表可知,选项ABD正确,

对于选项C,由于10日的PM2.5日均值大于9日的PM2.5日均值,

C错误,

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有共同的焦点,且两曲线的公共点到的距离是它到直线 (点在此直线右侧)的距离的一半.

1)求椭圆的方程;

2)设为坐标原点,直线过点且与椭圆交于两点,以为邻边作平行四边形.是否存在直线,使点落在椭圆或抛物线上?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,将三角形沿线段折起到的位置,,如图2所示.

(Ⅰ)证明:平面 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中平面,且

1)求证:

2)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成的角的正弦值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为49.5尺,夏至、大暑、处暑三个节气晷长之和为10.5尺,则立秋的晷长为(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,分别为的中点是由绕直线旋转得到,连结.

1)证明:平面

2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,分别为的中点是由绕直线旋转得到,连结.

1)证明:平面

2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次

空气质量等级

[0200]

(200400]

(400600]

1(优)

2

16

25

2(良)

5

10

12

3(轻度污染)

6

7

8

4(中度污染)

7

2

0

1)分别估计该市一天的空气质量等级为1234的概率;

2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);

3)若某天的空气质量等级为12,则称这天空气质量好;若某天的空气质量等级为34,则称这天空气质量不好.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

人次≤400

人次>400

空气质量好

空气质量不好

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案