精英家教网 > 高中数学 > 题目详情
19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$以及双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1\;(a>0,b>0)$的渐近线将第一象限三等分,则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的离心率为(  )
A.2或$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{6}$或$\frac{{2\sqrt{3}}}{3}$C.2或$\sqrt{3}$D.$\sqrt{3}$或$\sqrt{6}$

分析 由双曲线的渐近线的方程可得$\frac{b}{a}$=tan30°或$\frac{b}{a}$=tan60°,即为b=$\frac{\sqrt{3}}{3}$a或b=$\sqrt{3}$a,利用c2=a2+b2,将所得等式转化为关于离心率的方程即可解得离心率.

解答 解:双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{a}{b}$x,
由渐近线将第一象限三等分,可得:$\frac{b}{a}$=tan30°或$\frac{b}{a}$=tan60°,
即为b=$\frac{\sqrt{3}}{3}$a或b=$\sqrt{3}$a,
可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{2\sqrt{3}}{3}$a或c=2a,
即e=$\frac{2\sqrt{3}}{3}$或e=2.
故选:A.

点评 本题考查了双曲线的几何性质,双曲线的渐近线方程的运用以及双曲线离心率的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.一盒乒乓球共15个,其中有4个是已用过的,在比赛时,某运动员从中随机取2个使用,比赛结束后又放回盒中,则此盒中已用过的乒乓球个数的所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线互相垂直,那么此双曲线的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=1+ax-alnx,a≠0.
(1)求f(x)的单调区间;
(2)若函数f(x)的图象过点(1,0),是否存在实数b,使得对任意的实数c∈[1,2],函数g(x)=x3+x2[f′(x)+b]在区间(c,3)上不单调(f′(x)是f(x)的导函数)?若存在,求b的取值范围;若不存在,请说明理由;
(3)设ai=$\frac{lni}{i}$(i∈N*),求证:a2•a3…an<$\frac{1}{n}$(n≥2且n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知倾斜角为$\frac{π}{3}$的直线与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)相交于A,B两点,M(4,2)是弦AB的中点,则双曲线C的离心率是(  )
A.$\frac{\sqrt{3}-1}{2}$B.$\sqrt{3}$C.2D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知l是双曲线C:$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则P到x轴的距离为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.$\frac{2\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|1<x<3},B={x|x>2},则A∩B=(  )
A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<2}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直角三角形ABC中,A=90°,B=60°,B,C为双曲线E的两个焦点,点A在双曲线E上,则该双曲线的离心率为(  )
A.$\sqrt{3}+1$B.$\sqrt{2}+1$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案