精英家教网 > 高中数学 > 题目详情
14.半径为R的球O中有两个半径分别为2$\sqrt{3}$与2$\sqrt{2}$的截面圆,它们所在的平面互相垂直,且两圆的公共弦长为R,则球O表面积为(  )
A.64πB.100πC.36πD.24π

分析 设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是OO1=O2E=$\sqrt{{R}^{2}-8}$,
AB=2AE=2$\sqrt{12-{R}^{2}+8}$=R即可.

解答 解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是OO1=O2E=$\sqrt{{R}^{2}-8}$,
AB=2AE=2$\sqrt{12-{R}^{2}+8}$=R
∴R=4.则球O表面积为4πR2=64π
故选:A.

点评 本题主要考查球的有关概念以及两平面垂直的性质,是对基础知识的考查.解决本题的关键在于得到OO1EO2为矩形.属于中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=log0.2(kx2-kx+1)的定义域为R,则实数k的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若集合M={y|y=2017x},S={x|y=log2017(x-1)},则下列结论正确的是(  )
A.M=SB.M∩S=∅C.M∪S=SD.M∪S=M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若|z+1|=1,则满足Rez≤-1且Imz≥0的复数z对应点所组成的图形的面积是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为角A,B,C所对的边长,且c=-3bcosA.
(1)求$\frac{{{a^2}-{b^2}}}{c^2}$的值;  
(2)若tanC=$\frac{3}{4}$.试求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表)为(  )
A.70B.72C.74D.76

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.推理过程:“因为无理数是无限小数,$\frac{1}{3}$=0.333333333333…是无限小数,所以$\frac{1}{3}$是无理数”,以下说法正确的是(  )
A.完全归纳推理,结论正确B.三段论推理,结论正确
C.传递性关系推理,结论正确D.大前提正确,推理的结论错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知一家公司生产某种产品的年固定成本为6万元,每生产1千件需另投入2.9万元.设该公司一年内生产该产品x千件并全部销售完,每千件的销售收入为g(x)万元,且g(x)=$\left\{\begin{array}{l}{8+\frac{{2}^{x}}{64x},1≤x≤8}\\{11-\frac{1}{30}{x}^{2},x>8}\end{array}\right.$.
(1)写出年利润f(x)(万元)关于年产量x(千件)的函数解析式;
(2)求该公司生产这一产品的最大利润及相应的年产量.(年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三10月月考数学(文)试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

在直角坐标系中,以为极点,轴正半轴为极轴建立坐标系,曲线极坐标方程为,曲线参数方程为为参数).

(Ⅰ)求的直角坐标方程;

(Ⅱ)当有两个公共点时,求实数取值范围.

查看答案和解析>>

同步练习册答案