| A. | 64π | B. | 100π | C. | 36π | D. | 24π |
分析 设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是OO1=O2E=$\sqrt{{R}^{2}-8}$,
AB=2AE=2$\sqrt{12-{R}^{2}+8}$=R即可.
解答
解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2为矩形,于是OO1=O2E=$\sqrt{{R}^{2}-8}$,
AB=2AE=2$\sqrt{12-{R}^{2}+8}$=R
∴R=4.则球O表面积为4πR2=64π
故选:A.
点评 本题主要考查球的有关概念以及两平面垂直的性质,是对基础知识的考查.解决本题的关键在于得到OO1EO2为矩形.属于中档题,
科目:高中数学 来源: 题型:选择题
| A. | M=S | B. | M∩S=∅ | C. | M∪S=S | D. | M∪S=M |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70 | B. | 72 | C. | 74 | D. | 76 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 完全归纳推理,结论正确 | B. | 三段论推理,结论正确 | ||
| C. | 传递性关系推理,结论正确 | D. | 大前提正确,推理的结论错误 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三10月月考数学(文)试卷(解析版) 题型:解答题
选修4-4:坐标系与参数方程
在直角坐标系
中,以
为极点,
轴正半轴为极轴建立坐标系,曲线
极坐标方程为
,曲线
参数方程为
(
为参数).
(Ⅰ)求
的直角坐标方程;
(Ⅱ)当
与
有两个公共点时,求实数
取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com