精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)是定义在[-e,0]∪(0,e]上的奇函数,当x∈[-e,0)时,有f(x)=ax-ln(-x)(其中e为自然对数的底,a∈R).
(1)求函数f(x)的解析式.
(2)试问是否存在实数a,使得当x∈(0,e]时,f(x)的最大值是2?如果存在,求出实数a的值;如果不存在,请说明理由.

分析 (1)设x∈(0,-e],则-x∈[-e,0),故f(-x)=-ax-ln(x),根据函数的奇偶性求出此时的解析式,即可得到函数在定义域内的解析式;
(2)假设存在实数a满足条件,通过讨论a的范围,利用函数的单调性求出函数的最小值,解出a的值即可.

解答 解:(1)当x∈(0,e]时,-x∈[-e,0),
则f(-x)=a(-x)-lnx,
又f(x)是奇函数,故f(x)=-f(-x)=ax+lnx,
故f(x)=$\left\{\begin{array}{l}{ax-ln(-x),-e≤x<0}\\{ax+lnx,0<x≤e}\end{array}\right.$;
(2)当x∈(0,e]时,f(x)=ax+lnx,
f′(x)=a+$\frac{1}{x}$=$\frac{ax+1}{x}$,
①当a≥0时,f′(x)>0,f(x)在区间(0,e]递增,
故函数f(x)在区间(0,e]上的最大值是f(e)=ae+1=2,
故a=$\frac{1}{e}$>0满足题意;
②当-$\frac{1}{a}$≥e,即-$\frac{1}{e}$≤a<0时,f′(x)=a+$\frac{1}{x}$≥-$\frac{1}{e}$+$\frac{1}{x}$≥-$\frac{1}{e}$+$\frac{1}{e}$=0,
故f(x)在(0,e]递增,
此时f(x)在区间(0,e]的最大值是f(e)=ae+1=2,
则a=$\frac{1}{e}$>0,不满足条件=$\frac{1}{e}$≤a<0;
③当a<-$\frac{1}{e}$时,可得f(x)在区间(0,-$\frac{1}{a}$]递增,在区间[-$\frac{1}{a}$,e]递减,
故x=-$\frac{1}{a}$时,f(x)max=f(-$\frac{1}{a}$)=-1+ln(-$\frac{1}{a}$),
令f(-$\frac{1}{a}$)=2,得a=-$\frac{1}{{e}^{3}}$>0$\frac{1}{e}$,不满足条件,
综上a=$\frac{1}{e}$时,函数f(x)在区间(0,e]上的最大值是2.

点评 本题考查对数函数的单调性和特殊点,函数的奇偶性,利用导数研究函数得最值,体现了分类讨论的数学思想,确定函数的最小值,是解题的难点和关键.

练习册系列答案
相关习题

科目:高中数学 来源:2017届江西南昌市新课标高三一轮复习训练五数学试卷(解析版) 题型:选择题

已知,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设点P(x,y)是不等式组$\left\{\begin{array}{l}{y≥0}\\{x-2y+1≥0}\\{x+y≤3}\end{array}\right.$,所表示的平面区域内的任意一点,向量$\overrightarrow{m}$=(1,1),$\overrightarrow{n}$=(2,1),点O是坐标原点.若向量$\overrightarrow{OP}$=λ$\overrightarrow{m}$+μ$\overrightarrow{n}$(λ,μ∈R),则λ-μ的取值范围是(  )
A.[-$\frac{3}{2}$,$\frac{2}{3}$]B.[-6,2]C.[-1,$\frac{7}{2}$]D.[-4,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F是双曲线C:y2-mx2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设α,β是两个平面,直线a?α则“a∥β”是“α∥β”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

已知椭圆的左焦点为为椭圆上一点,轴于点,且的中点.

(1)求椭圆的方程;

(2)直线与椭圆有且只有一个公共点,平行于的直线交,交椭圆于不同的亮点,问是否存在常熟,使得,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某程序框图如图所示,其中t∈Z,该程序运行后输出的k=2,则t的最大值为(  )
A.11B.2057C.2058D.2059

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1和F2分别是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是(  )
A.[-1,1]B.[-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$]C.[1,$\sqrt{2}$]D.[$\frac{2\sqrt{3}}{3}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:解答题

在一个盒子里装有6张卡片,上面分别写着如下定义域为的函数:

(1)现在从盒子中任意取两张卡片,记事件为“这两张卡片上函数相加,所得新函数是奇函数”,求事件的概率;

(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为,写出的分布列,并求其数学期望

查看答案和解析>>

同步练习册答案