精英家教网 > 高中数学 > 题目详情
已知函数f(x)=4cosxsin(x+
π
6
)+k,其中k为常数.
(1)若x∈[0,
π
2
],f(x)的最大值为4,求k的值; 
(2)将f(x)图象上的点的横坐标变为原来的λ(λ>1)倍,所得函数为g(x),设A、B是g(x)图象上任意两个相邻的最低点,线段AB与g(x)图象所围成的封闭图形的面为6π,点C是g(x)图象与y轴的交点,D是g(x)图象在y轴右侧且离y轴最近的一个对称中心,当
OC
OD
<0(O是坐标原点)时,求k的取值范围.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的图像与性质
分析:(1)先化简函数的解析式为f(x)=4cosxsin(x+
π
6
)+k=2sin(2x+
π
6
)+k+1,再求出最值,令其等于4,即可得到k的方程求出它的值.
(2)本小题可由A、B是g(x)图象上任意两个相邻的最低点,线段AB与g(x)图象所围成的封闭图形的面为6π这一条件入手求出ω的值,由此可以确定出函数图象的大体位置,再由
OC
OD
<0得出k的不等式,解出其范围即可.
解答: 解:(1)f(x)=4cosxsin(x+
π
6
)+k=2sin(2x+
π
6
)+k+1.
x∈[0,
π
2
],则2x+
π
6
∈[
π
6
6
],可得sin(2x+
π
6
)∈[-
1
2
,1].
又x∈[0,
π
2
],f(x)的最大值为4,可得k+3=4,解得k=1.
(2)由(1)知,f(x)=4cosxsin(x+
π
6
)+k=2sin(2x+
π
6
)+k+1.
∵A、B是g(x)图象上任意两个相邻的最低点,线段AB与g(x)图象所围成的封闭图形的面为6π,
∴|AB|×4=6π,解得|AB|=
3
2
π
,即T=
3
2
π
,故有ω=
3
2
π
=
4
3
,即g(x)=2sin(
4
3
x+
π
6
)+k+1
又点C是g(x)图象与y轴的交点,D是g(x)图象在y轴右侧且离y轴最近的一个对称中心,
OC
OD
<0
可得出k+1>0,故有k>-1.
k的取值范围k>-1.
点评:本题考查三角恒等变换与数量积的意义,三角恒等变换是高考重要内容,它与向量的结合是近年高考中常出现的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简:
(1+sinθ+cosθ)(sin
θ
2
-cos
θ
2
)
2+2cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:

新能源汽车是指利用除汽油、燃油之外的其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低.为了配合我国“节能减排”战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):
燃料电池轿车混合动力轿车氢能源动力轿车
标准型100150y
豪华型300450600
按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.
(1)求y的值;
(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看做一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;
(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测他们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4,把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:{x|x2+x-6=0},条件q:{x|mx+1=0},且q是p的充分不必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+1)e-x(e为自然对数的底数).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设函数φ(x)=xf(x)+tf′(x)+e-x,存在x1,x2∈[0,1],使得成立2φ(x1)<φ(x2)成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的部分图象.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和;
(Ⅲ)把函数y=f(x)的图象的周期扩大为原来的两倍,然后向右平移
3
个单位,再把纵坐标伸长为原来的两倍,最后向上平移一个单位得到函数y=g(x)的图象.若对任意的0≤m≤3,方程|g(kx)|=m在区间[0,
6
]上至多有一个解,求正数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB上一点.
(1)当点E为AB的中点时,求证:BD1∥平面A1DE;
(2)求点A1到平面BDD1的距离;
(3)当
AE
=
1
2
EB
时,求二面角D1-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足:a3=6,a5+a7=24.
(1)求an和Sn
(2)设bn=(
2
 an,求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列函数:
①f(x)=x 
1
2

②f(x)=x2
③f(x)=2x
④f(x)=log2x.
则满足关系式f′(2)>f(3)-f(2)>f′(3)的函数的序号是
 

查看答案和解析>>

同步练习册答案