分析 (I)根据题意设出椭圆方程,b=2,e=$\frac{c}{a}$=$\frac{2\sqrt{5}}{5}$,即a2=b2+c2,即可求得a和b的值,求得椭圆方程;
(II)设出直线方程及点P和Q的坐标,并代入椭圆方程,求得关于y的一元二次方程,由韦达定理求得y1+y2和y1•y2的表达式,表示出向量$\overrightarrow{{B}_{2}P}$及$\overrightarrow{{B}_{2}Q}$,根据向量数量积的坐标表示,求得$\overrightarrow{{B}_{2}P}$•$\overrightarrow{{B}_{2}Q}$的值,由PB2⊥QB2,即$\overrightarrow{{B}_{2}P}$•$\overrightarrow{{B}_{2}Q}$=0,求得m值,写出直线方程.
解答 解:(I)设所给椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),
∵$\frac{c}{a}$=$\frac{2\sqrt{5}}{5}$,
∴$1-\frac{b^2}{a^2}=\frac{4}{5}$,即$\frac{b^2}{a^2}=\frac{1}{5}$,
又∵b2=4,
∴a2=20,
∴$\frac{x^2}{20}+\frac{y^2}{4}=1$
(II)由题意知直线l的倾斜角不为0,故可设直线l的方程为:x=my-2.
代入椭圆方程得(m2+5)y2-4my-16=0,设 P(x1,y1),Q(x2,y2),
则${y_1}+{y_2}=\frac{4m}{{{m^2}+5}}$,${y_1}•{y_2}=-\frac{16}{{{m^2}+5}}$,
又$\overrightarrow{{{B}_2}{P}}=({{x_1}-2,{y_1}})$,$\overrightarrow{{{B}_2}Q}=({{x_2}-2,{y_2}})$,
所以$\overrightarrow{{{B}_2}{P}}•\overrightarrow{{{B}_2}Q}=({{x_1}-2})({{x_2}-2})+{y_1}{y_2}=({m{y_1}-4})({m{y_2}-4})+{y_1}{y_2}=({{m^2}+1}){y_1}{y_2}-4m({{y_1}+{y_2}})+16$,
=$-\frac{{16({{m^2}+1})}}{{{m^2}+5}}-\frac{{16{m^2}}}{{{m^2}+5}}+16=-\frac{{16{m^2}-64}}{{{m^2}+5}}$,
由 P B2⊥Q B2得$\overrightarrow{{{B}_2}{P}}•\overrightarrow{{{B}_2}Q}=0$,即16m2-64=0
解得m=±2,
∴直线l的方程为x=±2y-2,即x±2y+2=0.
点评 本题考查椭圆的标准方程、椭圆的几何性质,考查直线与椭圆的位置关系,考查向量知识的运用,综合性强,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1≤a<0 | B. | a>0或a≤-1 | C. | -1<a<0 | D. | a>0或a<-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{{2\sqrt{15}}}{3}$ | D. | $\frac{{\sqrt{15}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,0] | B. | [1,2] | C. | [0,1] | D. | (-∞,1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.50 | B. | 0.60 | C. | 0.70 | D. | 0.80 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com