分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值和最大值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{3x+y-6=0}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即A(2,0),
代入目标函数z=x+y得z=2.
即目标函数z=x+y的最小值为2.
当直线y=-x+z经过点B时,
直线y=-x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{y=3}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$,即B(5,3),
代入目标函数z=x+y得z=5+3=8.
即目标函数z=x+y的最大值为8.
即z=x+y的取值范围为[2,8],
故答案为:[2,8].
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{{2{e^2}}},+∞})$ | B. | $({-1,\frac{1}{{2{e^2}}}}]$ | C. | $[{-\frac{1}{{2{e^2}}},1})$ | D. | $({-∞,-\frac{1}{{2{e^2}}}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=5 | B. | n=6 | C. | n=7 | D. | n=9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120° | B. | 60° | C. | 150° | D. | 30° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com