精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y≤3}\\{\;}\end{array}\right.$,则变量z=x+y的取值范围为[2,8].

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值和最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{3x+y-6=0}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即A(2,0),
代入目标函数z=x+y得z=2.
即目标函数z=x+y的最小值为2.
当直线y=-x+z经过点B时,
直线y=-x+z的截距最大,此时z最大.
由$\left\{\begin{array}{l}{y=3}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$,即B(5,3),
代入目标函数z=x+y得z=5+3=8.
即目标函数z=x+y的最大值为8.
即z=x+y的取值范围为[2,8],
故答案为:[2,8].

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的图象在点(x0,f(x0))处的切线方程l:y=g(x),若函数f(x)满足?x∈l(其中I为函数f(x)的定义域),当x≠x0时,[f(x)-g(x)](x-x0)>0恒成立,则称x0为函数f(x)的“转折点”,若函数f(x)=lnx-ax2-x在(0,e]上存在一个“转折点”,则a的取值范围为(  )
A.$[{\frac{1}{{2{e^2}}},+∞})$B.$({-1,\frac{1}{{2{e^2}}}}]$C.$[{-\frac{1}{{2{e^2}}},1})$D.$({-∞,-\frac{1}{{2{e^2}}}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x,y满足$\left\{\begin{array}{l}x≥0\\ x+2y-3≥0\\ 2x+y-3≤0\end{array}\right.$,则u=2x+y的最大值为(  )
A.3B.$\frac{5}{2}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为Sn,则$\underset{lim}{n→∞}$Sn=2,则q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二项式(x-$\frac{1}{x}$)n(n∈N*)的展开式中存在常数项的一个充分条件是(  )
A.n=5B.n=6C.n=7D.n=9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.由曲线y=x2和曲线y=$\sqrt{x}$围成的一个叶形图如图所示,则图中阴影部分面积为(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在数列{an}中,其前n项和为Sn,S1=1,S2=2,若Sn+2=2Sn+1-Sn+2,数列bn=an•2n,数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x+sinx(x∈R),且f(y2-8x+11)+f(x2-6y+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的最小值与最大值的和为62.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(2,2$\sqrt{3}$-4),$\overrightarrow{b}$=(1,1),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.120°B.60°C.150°D.30°

查看答案和解析>>

同步练习册答案