精英家教网 > 高中数学 > 题目详情
12.食品安全是关乎到人民群众生命的大事.某市质检部门为了解该市甲、乙两个食品厂生产食品的质量,从两厂生产的食品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当食品中的此种元素含量不小于18毫克时,该食品为优等品.
(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;
(Ⅱ)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);
(Ⅲ)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

分析 (Ⅰ)甲厂抽取的样本中优等品有6件,乙厂抽取的优等品率有5件,由此能估计甲、乙两厂生产的优等品率.
(Ⅱ)由题意得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
(Ⅲ)抽取的优等品数甲厂恰比乙厂多2件包括2个事件,即A=“抽取的优等品数甲厂2件,乙厂0件“,B=“抽取的优等品数甲厂3件,乙厂1件“,由此能求出抽取的优等品数甲厂恰比乙厂多2件的概率.

解答 (本小题满分12分)
解:(Ⅰ)甲厂抽取的样本中优等品有6件,优等品率为$\frac{6}{10}=\frac{3}{5}$,
乙厂抽取的优等品率有5件,优等品率为$\frac{5}{10}=\frac{1}{2}$.
(Ⅱ)由ξ的值0,1,2,3,
P(ξ=0)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(ξ=1)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(ξ=2)=$\frac{{C}_{5}^{2}{C}_{5}^{1}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(ξ=3)=$\frac{{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
ξ的分布列为:

 ξ 0 1 2 3
 P $\frac{1}{12}$ $\frac{5}{12}$ $\frac{5}{12}$ $\frac{1}{12}$
Eξ=$0×\frac{1}{12}+1×\frac{5}{12}+2×\frac{5}{12}$+3×$\frac{1}{12}$=$\frac{3}{2}$.
(Ⅲ)抽取的优等品数甲厂恰比乙厂多2件包括2个事件,
即A=“抽取的优等品数甲厂2件,乙厂0件“,
B=“抽取的优等品数甲厂3件,乙厂1件“,
P(A)=${C}_{3}^{2}(\frac{2}{5})^{2}(\frac{2}{5})$×${C}_{3}^{0}(\frac{1}{2})^{0}(\frac{1}{2})^{3}$=$\frac{27}{500}$,
P(B)=${C}_{3}^{3}(\frac{3}{5})^{3}×{C}_{3}^{1}(\frac{1}{2})(\frac{1}{2})^{2}$=$\frac{81}{1000}$,
∴抽取的优等品数甲厂恰比乙厂多2件的概率P=P(A)+P(B)=$\frac{27}{500}+\frac{81}{1000}$=$\frac{27}{200}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设全集U=R,集合A={x|-1<x<4},B={y|y=x+1,x∈A},试求A∪B,A∩B,(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\end{array}\right.$,则z=3x+y的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}满足a1=2,an+1=2an-n+1,n∈N*
(1)求数列{an-n}的通项公式;
(2)若数列bn=$\frac{1}{{n({a_n}-{2^{n-1}}+2)}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥x\\ x+3y≤4\\ x≥-2\end{array}\right.$,则满足条件的可行域的面积为6,z=|x-3y|的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,圆O的割线PA过圆心O交圆于另一点B,弦CD交OB于点E,且∠P=∠OCE,PB=OA=2,则PE的长等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式f(x)=$\frac{1}{{4}^{x}}$-$\frac{a}{{2}^{x}}$(a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3+mx2-3m2x+1
(1)当m=1时,求曲线y=f(x)在点(2,f(2))处的切线方程
(2)若f(x)在区间(-2,3)上是减函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当实数a为何值时z=a2-2a+(a2-3a+2)i.
(1)为纯虚数;
(2)为实数;
(3)对应的点在第一象限.

查看答案和解析>>

同步练习册答案