精英家教网 > 高中数学 > 题目详情
4.已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式f(x)=$\frac{1}{{4}^{x}}$-$\frac{a}{{2}^{x}}$(a∈R).
(1)写出f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最大值.

分析 (Ⅰ)求出a=1;设x∈[0,1],则-x∈[-1,0],利用条件,即可写出f(x)在[0,1]上的解析式;
(Ⅱ)利用换元法求f(x)在[0,1]上的最大值.

解答 解:(Ⅰ)∵f(x)为定义在[-1,1]上的奇函数,且f(x)在x=0处有意义,
∴f(0)=0,即f(0)=$\frac{1}{40}$-$\frac{a}{20}$=1-a=0.
∴a=1.…(3分)
设x∈[0,1],则-x∈[-1,0].
∴f(-x)=$\frac{1}{4-x}$-$\frac{1}{2-x}$=4x-2x
又∵f(-x)=-f(x)
∴-f(x)=4x-2x
∴f(x)=2x-4x.…(8分)
(Ⅱ)当x∈[0,1],f(x)=2x-4x=2x-(2x2
∴设t=2x(t>0),则f(t)=t-t2
∵x∈[0,1],∴t∈[1,2].
当t=1时,取最大值,最大值为1-1=0.…(12分)

点评 本题考查函数的奇偶性,考查函数解析式的确定,考查函数的最值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各式中不能化简为$\overrightarrow{AD}$的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$B.$\overrightarrow{AD}$+$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CE}$C.$\overrightarrow{MB}$-$\overrightarrow{MA}$+$\overrightarrow{BD}$D.$\overrightarrow{CB}$+$\overrightarrow{AD}$-$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.食品安全是关乎到人民群众生命的大事.某市质检部门为了解该市甲、乙两个食品厂生产食品的质量,从两厂生产的食品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当食品中的此种元素含量不小于18毫克时,该食品为优等品.
(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;
(Ⅱ)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);
(Ⅲ)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知点A(-1,0),点B(1,0),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的商是3,则点M轨迹是直线x=-2(除去点(-2,0)).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列命题:
①设a,b为非零实数,则“a<b”是“$\frac{1}{a}>\frac{1}{b}$”的充分不必要条件;
②在△ABC中,若A>B,则sinA>sinB;
③命题“?x∈R,sinx<1”的否定为“?x0∈R,sinx0>1”;
④命题“若x≥2且y≥3,则x+y≥5”的逆否命题为“x+y<5,则x<2且y<3”.
其中真命题的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=|tanx|,则函数y=f(x)+log4x-1的零点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2-x,则$f({log_2}\frac{1}{3})$的值为(  )
A.$-{log_2}3-\frac{1}{3}$B.${log_2}3-\frac{1}{3}$C.$-{log_2}3+\frac{1}{3}$D.${log_2}3+\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$z=cos\frac{2π}{3}+isin\frac{2π}{3}$(i为虚数单位),则z3的虚部是(  )
A.0B.-1C.iD.1

查看答案和解析>>

同步练习册答案