精英家教网 > 高中数学 > 题目详情
13.若实数x,y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\end{array}\right.$,则z=3x+y的最小值为6.

分析 由题意作出其平面区域,将z=3x+y化为y=-3x+z,z相当于直线y=-3x+z的纵截距,由几何意义可得.

解答 解:由题意作出$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\end{array}\right.$的平面区域,

将z=3x+y化为y=-3x+z,z相当于直线y=-3x+z的纵截距,
由$\left\{\begin{array}{l}{x-y=0}\\{x+y=3}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,即A($\frac{3}{2}$,$\frac{3}{2}$).
当直线y=-3x+z经过A时,z有最大值,此时z的最大值3×$\frac{3}{2}$+$\frac{3}{2}$=6;
故答案为:6.

点评 本题考查了简单线性规划,作图要细致认真,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=$\frac{1}{8}$x2+$\frac{1}{2}$x+$\frac{1}{2}$的图象上,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体中,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,∠ABC=∠BCD=90°,AB=2,CD=CB=CP=1.点P在底面上的射影为线段BD的中点M.
(Ⅰ)若E为棱PB的中点,求证:CE∥平面PAD;
(Ⅱ)求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.63.03.34.14.54.95.6
(1)求y关于t的线性回归方程;
(2)请利用(1)中的回归方程预测该地区2017年农村居民家庭人均纯收入.
附:回归直线公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C的离心率为$\frac{5}{2}$,左、右焦点为F1,F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=$\frac{13}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各式中不能化简为$\overrightarrow{AD}$的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$B.$\overrightarrow{AD}$+$\overrightarrow{EB}$+$\overrightarrow{BC}$+$\overrightarrow{CE}$C.$\overrightarrow{MB}$-$\overrightarrow{MA}$+$\overrightarrow{BD}$D.$\overrightarrow{CB}$+$\overrightarrow{AD}$-$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.食品安全是关乎到人民群众生命的大事.某市质检部门为了解该市甲、乙两个食品厂生产食品的质量,从两厂生产的食品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:

规定:当食品中的此种元素含量不小于18毫克时,该食品为优等品.
(Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;
(Ⅱ)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);
(Ⅲ)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2-x,则$f({log_2}\frac{1}{3})$的值为(  )
A.$-{log_2}3-\frac{1}{3}$B.${log_2}3-\frac{1}{3}$C.$-{log_2}3+\frac{1}{3}$D.${log_2}3+\frac{1}{3}$

查看答案和解析>>

同步练习册答案