精英家教网 > 高中数学 > 题目详情
3.已知抛物线C:y2=2px(p>0),过其点F的直线l交抛物线C于点A,B,若|AF|:|BF|=3:1,则直线l的斜率等于(  )
A.±$\frac{\sqrt{3}}{3}$B.±1C.±$\sqrt{2}$D.±$\sqrt{3}$

分析 设A(x1,y1),B(x2,y2),A在第一、三象限,利用|AF|:|BF|=3:1,求出A的坐标,即可求出直线l的斜率.

解答 解:设A(x1,y1),B(x2,y2),A在第一象限,
∵|AF|:|BF|=3:1,
故y1=-3y2,x1-$\frac{p}{2}$=3($\frac{p}{2}$-x2),
∴x1=$\frac{3}{2}$p,y1=$\sqrt{3}$p,
∴直线l的斜率等于$\frac{\sqrt{3}p-0}{p}$=$\sqrt{3}$.
同理A在第三象限,直线l的斜率等于-$\sqrt{3}$.
故选:D.

点评 本题考查抛物线的方程,考查直线的斜率,解题的关键是利用|AF|:|BF|=3:1,求出A的坐标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在△ABC中,已知a=$\sqrt{2}$,B=60°,A=45°,则b等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正方体的棱长为1,则正方体的外接球的体积为$\frac{{\sqrt{3}}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,若以点F为圆心,半径为a的圆与双曲线C的渐近线相切,则双曲线C的离心率等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设命题p:x2=3x+4,q:x=$\sqrt{3x+4}$,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.f(x)是定义在D上的函数,若存在区间[m,n]?D(m<n),使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.
①f(x)=3-$\frac{4}{x}$不可能是k型函数;
②若函数y=-$\frac{1}{2}$x2+x是3型函数,则m=-4,n=0;
③设函数f(x)=|3x-1|是2型函数,则m+n=1;
④若函数y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函数,则n-m的最大值为$\frac{2\sqrt{3}}{3}$
正确的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式为an=en(e为自然对数的底数);
(Ⅰ)证明数列{an}为等比数列;
(Ⅱ)若bn=lnan,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x∈(0,l)时,不等式$m≤\frac{1}{x}+\frac{1}{1-x}$恒成立,则实数m的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若不等式f(x)=x2+ax-2>0在区间[1,5]上有解,且f(5)>0,则a的取值范围是(  )
A.(-$\frac{23}{5}$,+∞)B.[-$\frac{23}{5}$,1]C.(1,+∞)D.(-∞,-$\frac{23}{5}$]

查看答案和解析>>

同步练习册答案