精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的通项公式为an=en(e为自然对数的底数);
(Ⅰ)证明数列{an}为等比数列;
(Ⅱ)若bn=lnan,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

分析 (Ⅰ)an=en,只要证明$\frac{{a}_{n+1}}{{a}_{n}}$=非0常数即可.
(Ⅱ)由(Ⅰ)知:bn=lnan=n,可得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”即可得出.

解答 (Ⅰ)证明:∵an=en
a1=e,且$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{e}^{n+1}}{{e}^{n}}$=e,
∴数列{an}是首项为e,公比为e的等比数列.
(Ⅱ)解:由(Ⅰ)知:bn=lnan=lnen=n,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
其前n项和Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查了等比数列的通项公式、“裂项求和”方法,考查了变形推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{2,x=1}\\{3f(x-1),x≥2}\end{array}\right.$,则f(3)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=1-i,则$\frac{z-1}{{z}^{2}}$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$iD.$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=2px(p>0),过其点F的直线l交抛物线C于点A,B,若|AF|:|BF|=3:1,则直线l的斜率等于(  )
A.±$\frac{\sqrt{3}}{3}$B.±1C.±$\sqrt{2}$D.±$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=x${\;}^{-{t}^{2}+2t+3}$为偶函数(t∈z),且在x∈(0,+∞)单调递增.
(1)求f(x)的表达式;
(2)若函数g(x)=loga[a$\sqrt{f(x)}$-x]在区间[2,4]上单调递减函数(a>0且a≠1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四种函数中,表示同一函数的是(  )
A.y=x-1与$y=\sqrt{{{(x-1)}^2}}$B.y=x2与$y={(\sqrt{x})^4}$C.y=4lgx与y=2lgx2D.y=x2与$y=\root{3}{x^6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f定义如表,一列数x0,x1,x2,x3…满足x0=5,且对任意自然数均有xn+1=f(xn),则x2015的值为(  )
x12345
f(x)41352
A.1B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,若S2=16,且a1,a2-4,a3-8成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=$\frac{{S}_{n}}{2n}$($\frac{{a}_{n}-2}{2n}$)n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且a1=1,Sn=Sn-1+an-1+2n-2,(n≥2)
(1)求数列{an}的通项公式;
(2)若xn=1+$\frac{1}{{a}_{n}}$,设数列{xn}的前n项积为Tn,求证:
(i)(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
(ii)Tn≤2$(1+\frac{1}{{2}^{n}})^{{2}^{n}-2}$.

查看答案和解析>>

同步练习册答案