精英家教网 > 高中数学 > 题目详情
7.设函数f定义如表,一列数x0,x1,x2,x3…满足x0=5,且对任意自然数均有xn+1=f(xn),则x2015的值为(  )
x12345
f(x)41352
A.1B.2C.4D.5

分析 推导出数列{xn} 以4为周期循环往复,由此能求出x2015

解答 解:由已知得f(1)=4,f(2)=1,f(3)=3,f(4)=5,f(5)=2,
∵x0=5,且对任意自然数均有xn+1=f(xn),
∴x0=5,x1=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,
数列{xn} 以4为周期循环往复,
∵2015=4×503+3,
∴x2015=x3=4.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意数列有周期性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列说法中正确的个数是(  )
①命题“若a=0,则ab=0”的否命题是:“若a=0,则ab≠0”;
②命题p:“?x∈(-∞,0),2x<3x”,则¬p:“?x∈[0,+∞),2x≥3x”;
③对于实数a,b,“b<a<0”是“$\frac{1}{b}$>$\frac{1}{a}$”成立的充分不必要条件
④如果命题“¬p”与命题“p或q”都是真命题,那么命题q一定是真命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设命题p:x2=3x+4,q:x=$\sqrt{3x+4}$,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式为an=en(e为自然对数的底数);
(Ⅰ)证明数列{an}为等比数列;
(Ⅱ)若bn=lnan,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=2-|x|-m的图象与x轴有交点时,则(  )
A.-1≤m<0B.0≤m≤1C.0<m≤1D.m≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x∈(0,l)时,不等式$m≤\frac{1}{x}+\frac{1}{1-x}$恒成立,则实数m的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.“x<1”是“log2x<0”的必要不充分条件.  (在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选一个合适的填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中内角A、B、C所对边分别是a、b、c,若a=-ccos(A+C),则△ABC的形状一定是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$.
(1)求{an}的通项公式;
(2)若bn=$\frac{n+2}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Sn,求证:Sn<1.

查看答案和解析>>

同步练习册答案