精英家教网 > 高中数学 > 题目详情
8.曲线f(x)=f′(2)lnx-f(1)x+2x2在点(1,f(1))处的切线方程为15x+y-14=0.

分析 令x=1,可得f(1),求出导数,再令x=2,求出f′(2)=12,及切线的斜率,从而得到f(x),以及切点,再由点斜式方程,即可得到.

解答 解:x=1,f(1)=-f(1)+2,∴f(1)=1
f(x)=f′(2)lnx-f(1)x+2x2,则f′(x)=$\frac{1}{x}$•f′(2)-f(1)x+4x,
则f′(2)=$\frac{1}{2}$•f′(2)-2f(1)+8,即f′(2)=-4f(1)+16=12,
∴f(x)=12lnx-x+2x2
又切点是(1,1),f′(1)=15
则切线方程是y-1=15(x-1)即15x+y-14=0.
故答案为:15x+y-14=0.
故答案为:x+y+1=0.

点评 本题考查导数的几何意义:曲线在该点处的切线的斜率,考查直线方程的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.利用单位圆写出符合下列条件的角x的取值范围.
(1)cosx$>\frac{1}{2}$;
(2)|cosx|$≤\frac{1}{2}$;
(3)sinx$≥\frac{1}{2}$且tanx≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$=$\overrightarrow{c}$•$\overrightarrow{a}$=-1,则|$\overrightarrow{a}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设$\overrightarrow{a}$=(1,2,0),$\overrightarrow{b}$=(1,0,1).则“$\overrightarrow{c}$=($\frac{2}{3}$,-$\frac{1}{3}$,-$\frac{2}{3}$)”是“$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow{c}$⊥$\overrightarrow{b}$且$\overrightarrow{c}$为单位向量”的充分不必要条件(填充要,充分不必要,必要不充分).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心为直线x-y+1=0与x轴的交点,半径为2.
(1)求圆C的方程;
(2)设O为原点,点A(3,0),点M为圆C上一点,试探究:当点M在圆C上运动时,$\frac{|MA|}{|MO|}$是否发生变化,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正数a,b满足$\frac{1}{2a+4b}$+$\frac{1}{2a+b}$=1,则a+b的最小值是$\frac{1}{6}$(3+2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,AB=5,BC=8,∠ABC=60°,D是其外接圆$\widehat{AC}$上一点,且CD=3,则AD的长为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知cosα=-$\frac{15}{17}$,α∈($π,\frac{3}{2}π$),求sin2α,cos$\frac{α}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN∥平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{3}$?若存在,求出AP的长h;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案