精英家教网 > 高中数学 > 题目详情
13.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN∥平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{3}$?若存在,求出AP的长h;若不存在,请说明理由.

分析 (I)利用CM与BN交于F,连接EF.证明AN∥EF,通过直线与平面平行的判定定理证明AN∥平面MEC;
(II)对于存在性问题,可先假设存在,即假设x在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{3}$.再通过建立空间直角坐标系,求出相关点的坐标,利用坐标法进行求解判断.

解答 解:(I)CM与BN交于F,连接EF.
由已知可得四边形BCNM是平行四边形,
所以F是BN的中点.
因为E是AB的中点,
所以AN∥EF.…(7分)
又EF?平面MEC,AN?平面MEC,
所以AN∥平面MEC.…(9分)
(II)由于四边形ABCD是菱形,E是AB的中点,可得DE⊥AB.
又四边形ADNM是矩形,面ADNM⊥面ABCD,
∴DN⊥面ABCD,
如图建立空间直角坐标系D-xyz,
则D(0,0,0),E($\sqrt{3}$,0,0),C(0,2,0),P($\sqrt{3}$,-1,h),
$\overrightarrow{CE}$=($\sqrt{3}$,-2,0),$\overrightarrow{EP}$=(0,-1,h),
设平面PEC的法向量为$\overrightarrow{{n}_{1}}$=(x,y,z).
则$\left\{\begin{array}{l}{\overrightarrow{CE}•\overrightarrow{{n}_{1}}=0}\\{\overrightarrow{EP}•\overrightarrow{{n}_{1}}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{\sqrt{3}x-2y=0}\\{-y+hz=0}\end{array}\right.$,
令y=$\sqrt{3}$h,∴$\overrightarrow{{n}_{1}}$=(2h,$\sqrt{3}$h,$\sqrt{3}$),
又平面ADE的法向量$\overrightarrow{{n}_{2}}$=(0,0,1),
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{\sqrt{3}}{\sqrt{7{h}^{2}+3}}$=$\frac{1}{2}$,解得h=$\frac{3\sqrt{7}}{7}$,
∴在线段AM上是否存在点P,当h=$\frac{3\sqrt{7}}{7}$时使二面角P-EC-D的大小为$\frac{π}{3}$.

点评 本题主要考查空间直线和平面平行的判断以及二面角的应用,考查存在性问题,建立坐标系利用向量法是解决本题的关键.考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.曲线f(x)=f′(2)lnx-f(1)x+2x2在点(1,f(1))处的切线方程为15x+y-14=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,椭圆$W:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左顶点A在圆O:x2+y2=16上.
(Ⅰ)求椭圆W的方程;
(Ⅱ)直线AP与椭圆W的另一个交点为P,与圆O的另一个交点为Q.
(i)当$|AP|=\frac{{8\sqrt{2}}}{5}$时,求直线AP的斜率;
(ii)是否存在直线AP,使得$\frac{|PQ|}{|AP|}=3$?若存在,求出直线AP的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在如图所示的几何体ABD-A1B1C1D1中,底面A1B1C1D1是矩形,AA1⊥平面A1B1C1D1,且AA1平行且等于BB1平行且等于DD1,若∠DC1D1=-$\frac{π}{4}$,∠BC1B1=$\frac{π}{3}$,BC1=2,则该几何体的体积是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{8}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,O是正方形AA1B1B的中心,AB=2$\sqrt{2}$,C1O⊥平面AA1B1B,且C1O=2.
(1)设N为棱B1C1的中点,点M在平面AA1B1B内,且MN⊥平面A1B1C1,求线段AM的长;
(2)求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若椭圆的中心在原点,焦点在x轴上,离心率为$\frac{1}{2}$,焦距为6,则该椭圆的方程是(  )
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$C.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{9}=1$D.$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{27}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)过点(1,1),则a+b的最小值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a,b∈R,函数f(x)=ax2+lnx+b的图象在点(1,f(1))处的切线方程为4x+4y+1=0.
(1)求函数f(x)的最大值;
(2)证明:f(x)<x3-2x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=tan4x的最小正周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案