精英家教网 > 高中数学 > 题目详情
3.函数y=tan4x的最小正周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 由条件根据函数y=Atan(ωx+φ)的周期为$\frac{π}{ω}$,可得结论.

解答 解:函数y=tan4x的最小正周期T=$\frac{π}{4}$,
故选:D.

点评 本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为$\frac{π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN∥平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P-EC-D的大小为$\frac{π}{3}$?若存在,求出AP的长h;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(2,3,5),点B(3,1,4),那么A,B两点间的距离为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+7x2+8x+1,当x=4时,需要做乘法和加法的次数分别是(  )
A.6,6B.5,6C.5,5D.6,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题p:x2-3x+2>0;命题q:0<x<a.若p是q的必要而不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若三点A(2,2),B(a,0),C(0,4)共线,则a的值等于(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若tanα,tanβ是方程x2-3$\sqrt{3}$x+4=0的两个根,则tan(α+β)=$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=2cos({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的最小正周期为π,直线$x=-\frac{π}{24}$为它的图象的一条对称轴.
(1)当$x∈[{-\frac{5π}{24},\frac{5π}{24}}]$时,求函数f(x)的值域;
(2)在△ABC中,a,b,c分别为角A,B,C的对应边,若$f({-\frac{A}{2}})=\sqrt{2},a=3$,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为1cm2,该几何体的体积为$\frac{π}{6}$+$\frac{1}{3}$cm3cm3

查看答案和解析>>

同步练习册答案